
AD-AI1l 565 FORD AEROSPACE AND COMMUNICATIONS CORP PALO ALTO CA V-ETC FIG 17/2
KSOS SECURE UNIX VERIFICATION PLAN (KERNELIZED SECURE OPERATIM-ETC(U)
DEC 80 MDA03-7-C-0333

UNCLASSIFIED WN-TR7809-REV-2

III'IIff If IIIII
-IEEE-.....s

-... EEE.EEEEiliiiiiiiiii
!EEEEEEEEEEI

--- ,, Q 8 I11.
111112.2

g 36II1III1110 Jj .

MICROCOPY VESOLUTION TEST CHART

WDL-TR7809
Revision 2

December 1980

,"-I L-CURE MINICOMPUTER OPERATING SYSTEM (KSOS)

' SECURE UNIX VERIFICATION PLAN /

Department of Defense. Kernelized Secure Operating System

Contract MOA 903-77-C-0333
CORL 0002AD TI

MAR 0 3 1982
Prepared for:

Defense Supply Service - Washington W
Room 1 D245, The Pentagon
Washington, DC 20310

Approved for public release; distribution unlimited.

Ford Aerospace &
Communications Corporation
Western Development
LaOoratorles Division

3939 Fabian Way

Palo Alto. Caiforna 94303

82 i -3 029

NOTICE

The Department of Defense Kernelized Secure Operating System (KSOS) is being pro-
duced under contract for the U.S. Government. KSOS is intended to be compatible with :he
Western Electric Company's UNIXM Operating System (a proprietary product). KSOS is
not part of the UNIX license software and use of KSOS is independent of any UNIX license
agreement. Use of KSOS does not authorize use of UNIX in the absence of an appropriate
licensing ageement.

This document, furnished in accordance with Contract MDA 903-77-C-0333. shail not be
disclosed outside the Government and shall not be duplicated, used, or disclosed in ,'hoie or
in part for any purpose other than to evaluate the contractor's performance of Phase [" the
contract; upon completion of Phase I of the contract, the Government shall have the ht :o
duplicate, use, or disclose the data to the extent provided in the contract.

The contents of this document shall be handled as proprietary information untii 5 Apri
1978. After that time, the Government m-. distribute the document as it sees fit.

UNIX and PWB/UNIX are tradeiservice marks of the Bell Syst.,n.

DEC and PDP are registered trademarks of the Digital Equipment Corporation. Maynard.
N1 A.

c Ford Aerospace &
Communications Corporation

7

- I

S

KSOS VERIFICATION PLAN

Ford Aerospace/S1U International

3 APRIL 1978

I. Introduction1

II. Multilevel Security Model for KSCS 3
III. System Security Structure 31
IV. Language Selection for KSOS 35
V. Tools Supporting the KSOS Development 53
VI. Testing 59

Accession For

P-'(' T.'i3

:- NTI G.;:'... &I :

" \ " Y: Codes

mdlc/or

71!O

lii WDL-TR7809

KSOS VERIFICATION PLAN

SECTION I
INTRODUCTION

"'The purpose of this Verification Plan is to state how the
Ford Aerospace and Communications Corp. (FACC) and its
subcontractor, SRI International, intend to meet the verification
requirements of KSOS, the Fernelized Secure Cperating System.

- Also contained in this document are sections on the mathematical
model of security policy to be used in KSOS, on the role of tie
model, on the programming language to be used for system
implementation, on the tools to support the effort, and on the

* . role of testing.-,

c FACC and SRI intend to use a restatement of the Bell and
LaPadula model as the conceptual basis for the system security.
This modification extends the model of Bell and LaPadula, and
incorporates their work as a proper subset. The resulting
formulation appears to be well suited to proofs of correspondenca
between the formal specifications and the formal model. In
particular, automatic proof is facilitated, using mostly
syntactic properties and being based largely on existing tools. L
The formulation and the proofs of correspondence are described in
more detail in Section II.

One of the properties of the model discussed in Section II
is that it has been expressed as constraints on SPECIAL(SPECification and Assertion Language) , which is being used as
the formal specification language for KSOS. (SPECIAL is
described in Roubine and Robinson [77].) Section II also contains
a brief example of an illustrative specification in SPECIAL that
includes multilevel security and integrity. This example shows
how the abstract concepts presented earlier in that section can
be applied to a more concrete situation. The example concludes
with the theorems derived from the specification, and an
indication of how the correspondence proof follows. v'ost of the
theorems are seen to be trivial, lending confidence to FACC's
intention to produce complete proofs of the multilevel security
of the desiqn.

Section III discusses how the model relates to the KSOS
kernel, the emulator, and the user programs. It exhibits the
flexibility of the FACC/SRI approach in terms of different
security mechanisms and policies that are directly supported ty
the model, end which can be supported by various implementations
consistent with the specifications for the KSOS kernel. Note
that only one implementation of KSOS on the 11/70 is planned for
Phase II, including the security kernel and the 0YIX*tm emulator.
However, various alternate emulators can be built on top of the
kernel, or in fact the kernel interface can be used directly for
other applications. For example, the kernel interface is
expected to be suitable for the implementation of a
messaqe-orocessing system instead of the KSCS UNIY*tm emulator.
Furthermore, the proofs of correspondence between soecificatiors

DL-TR 7S09
- 1

KSOS VERIFICATION PLAN SECTION I Page 2

and the model will apply directly to any other implementation,
e.g., by Honeywell (HSOS?) on the SCOMP machine.

The choice of an implementation language for KSOS is
discussed in Section IV. Both Euclid and an extended Modula
appear to be acceptable candidates, subject to stated
assumptions, with Euclid appearing preferable at this time.
However, a final decision need not be made until around I July
1978, when operational versions of both compilers will be
available. This report thus outlines a decision procedure for -

that language selection, to be made around I July 1978. This
presents no problems or delays, because the first KSOS coding is
not scheduled to take place until late in 1978. Such a strategy
presents a minimum risk to the Government, while allowing the
advantageous postponement of an important "binding time" until
more can be known about the alternatives.

Section V deals with the tools to be used to support the
verification of the security of KSOS. These tools can be broken
down into two broad categories. The first includes the tools
which support the specification process, such as syntactic and
semantic analyzers, and related tools to perform the
correspondence proofs. The second category includes the tools
supporting code to specification checking (program verification).
At present the intention is to use existing theorem provers
developed under other projects at SRI to produce illustrative but
meaningful program proofs. As these other projects are on-going
and are supported by diverse funding, additional tools may be
available by the time they are needed for FSOS verification. We
intend to use the best available technology in providing the
Government with a high confidence system. FACC and SRI also plan
to monitor developments at other research centers for their
potential applicability to the KSOS verification effort.

Section VI discusses the testing to be performed on SOS.
It is appropriate to include this material here because testing
and verification are both ways of increasing confidence in the
satisfaction of critical system properties. FACC feels that
testing and verification are mutually supportive. Measures taken
to improve the verifiability of the product enhance its ease of
testing. (Testing is further discussed in the companion KSOS
Implementation Plan.)

REFERENCE

Roubine and Robinson (771. 0. Roubine and L. Robinson, SPECIAL
(SPECification and Assertion Language): Reference Manual, SPI
Technical Report CSC-45, 3rd Edition (January 1977).

WDL-TR7809

SECTION II
MULTILEVEL SECURITY MODEL FOR KSOS

INTRODUCTION

To prove security properties of a system design, it is
necessary to formulate a mathematical model of the desired
security. It is important that this model be easily related to
some formal description of the system design in order that the
proof be feasible. However, it is equally important that the

'" mathematical model be simple and easily comprehensible. Users of
the system must be convinced that the model represents their
intuitive conception of security. If a belief in the security of
systems is to be widely held, it is necessary that the successive
stages of:

1) intuitive notion of security,
2) mathematical model of security,
3) secure system design, and
4) secure system implementation

be related to one another in a straightforward manner. This
paper presents mathematical models of multilevel security that
significantly improve upon existing models of multilevel security
in achieving this goal.

One model that approximates the military security needs has
been developed by Bell and LaPadula [741, and has been applied to
the design and verification of a security kernel (Millen [761).
A similar model has been described by Walter et al. [751. These
models describe systems in which information may pass from
repositories of one security level to repositories of only the
same or higher security level. This report presents a multilevel
security model that is a generalization of the Bell and LaPadula
and Walter models, and reformulates this generalized model in
terms more amenable to proof. The concern here is for proving
properties of system specifications. The implementation of the
system must also be proved correct with respect to the
specification, but this issue is not within the scope of this
report.

In the Bell and LaPadula model each SUBJECT (i.e., a process
operating on behalf of a user) is assig-ed a unique SECURITY
LEVEL (or simply LEVEL). A subject can create (activate) an
OBJECT, which then acquires its own security level, namely that
of the subject. The subject is then free to operate on the
object as he wishes, including deleting (deactivating) it. It is
useful to view the operations as in two classes: MODIFY and
READ. The Bell and LaPadula model consists of the following five
axioms:

SIMPLE SECURITY CONDITION -- A subject S can read an object OB

WDL-TR7809

S

KSOS VERIFICATION PLAN SECTION II Page 4

only if the security level of S is at least that of O8. This
condition allows a subject to read only from objects whose
security level is less then or equal to his level.

*-PROPERTY (pronounced "star property") -- A subject can modify
an object OBI in a manner dependent on data in an object 082
only if the security level of OB is at least that of 082.
This condition prevents a subject from transferring
information from 052 to 051 unless 081's level is at least
that of OB2.

TRANOUILITY PRINCIPLE -- A subject cannot change the security
level of an active object.

NON-ACCESSIBILITY of INACTIVE OBJECTS -- A subject cannot read
the contents of an inactive object.

REWRITING OF NEWLY ACTIVATED OBJECTS -- A newly activated
object is given an initial state that is independent of the
state of any previous incarnations of the object.

The fact that these properties imply a multilevel secure
system is not immediately obvious. Nor are these properties
ideally suited to proving that a given design is multilevel
secure. This paper presents two models of multilevel security
that together fulfill the goals of comprehensibility and
provability. The second of the two models presented is
essentially equivalent to the Bell and LaPadula model, but is
formulated in a manner that makes the proof straightforward that
a given system design is multilevel secure. The first model
presented is more general and more abstract, thereby making it
easily comprehensible to a casual reader. The proof that the
second model is actually a restriction of the first is
straightforward.

MULTILEVEL SECURITY

Each user of the system has one or more independent
processes operating solely on his behalf. Each process has
associated with it a CLEARANCE and a CATEGORY SET. The system
has a fixed finite number of clearances that are totally ordered
by the relation "less than". For example, the clearance
CONFIDENTIAL is less than SECRET, which is less than TOP SECRET.
For convenience, clearances are represented as integers.

A category set is any subset of the set of all possible
categories. Examples of categories might be ATOMIC and NATO.
The combination of a clearance and a category set is called a
SECURITY LEVEL or equivalently ACCESS LEVEL: for simplicity, it
is often called just a LEVEL when ambiguity is not likely to
arise. A security level Li is equal to a security level L2 if

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 5

and only if the clearance of Li is equal to the clearance of L2
and the category set of LI is equai to the category set of L2. A
security level Li is said to be less than or equal to a security
level L2 whenever the clearance of LI is less than or equal to
the clearance of L2, and the category set of Li is a subset of
the category set of L2. Li is less than L2 whenever Li is less
than or equal to L2 and Li is not equal to L2. Thus the set of
all security levels can be partially ordered. Note that not all
security levels are related by the partial ordering, e.g., two
processes with respective security levels <SECRET, {ATOMIC}> and
<SECRET, {NATO)> are not comparable. The security levels and the
relation "less than" define a lattice since there is a minimum
and maximum clearance, and a maximum set of categories.

In informal terms, a system is MULTILEVEL SECURE if and only
if, for any two processes P1 and P2, unless the security level of

-P1 is less than or equal to the security level of P2, there is
nothing that P) can do to affect, in any way, the operation of
P2. That is, P2 is not able to know anything about P1, not even

_the existence of P1. This constraint implies that P1 cannot
affect the operation of P2 using an intermediate process P3. It
is not possible for a process at a higher level to transmit
information to a process at a lower level. Therefore,
INFORMATION CAN ONLY FLOW UPWARD IN SECURITY OR REMAIN AT THE
SAME LEVEL, i.e, can only flow to processes of greater or equal
security level.

The above constraint is consistent with the real military
security situation, since -- for example -- an individual whose
category set contains only ATOMIC cannot pass information to an
individual whose category set does not contain ATOMIC,
independent of the latter's clearance or the other components of
his category set.

For each user in the system, there is a maximum security
level at which he can operate, e.g., as the result of the login
routine assigning a process at that level to execute on his
behalf. The user can select to operate at one or more security
levels less than or equal to this maximum level. A process at
each of the chosen security levels will be created to operate on
the user's behalf at that particular level. However, the
existence of these processes may be hidden from the user by a
suitable interface program such as SIGMA (Ames and Oestreicher
(771). (It should be noted that the model and the system design
are not intended to prevent a user from generating TOP SECRET
information when logged in at CONFIDENTIAL, or from showing a TOP
SECRET document to an uncleared colleague when off-line. This
behavior is outside the scope of the model and is not under the
control of the computer system.)

The multilevel security model does not prohibit a process at
some security level from modifying information at a higher

WDL-TR 7809

KSOS VERIFICATION PLAN SECTION il Page 6 -

security level. However, there are many cases in which such a
prohibition is desirable. A group at MITRE (Biba f77]) has
identified the concept of integrity to solve this problem.
Integrity is the precise formal dual of multilevel security. In
addition to a security level, each process of the system has an
associated integrity level. The set of integrity levels is
identical to the set of security levels and has the same relation
"less thann. A system has multilevel integrity if and only if,
for any two processes P1 and P2, unless the integrity level of P1
is greater than or equal to the integrity level of P2, there is
nothing that P1 can do to affect, in any way, the operation of
P2. Therefore, information can only flow downward in integrity
or remain at the same integrity level. Integrity can be used to
limit the upward flow of information enforced by multilevel
security. It is important to remember that a process's security
level ar,' its integrity level need not be the same. The primary
advantage of using integrity as a fvrther means of restricting
information flow is that, being the formal dual or security, it
adds no significant complexity to the security model and no
significant complexity to the proof of a secure system design.

GENERAL MODEL OF MULTILEVEL SECURITY AND INTEGRITY

A system consists of a collection of operations or
functions. Each function may be invoked by a user of the system
(actually the function is invoked as part of a program running on
behalf of a user). When invoked, a function may take a set of
arguments. A function together with a particular set of
arguments is termed a function reference. When a function
reference is invoked, it can cause t-he state of the system to
change and/or return information to its invoker. The set of all
function references of a system is called F and some member of
this set is denoted by f.

We also define a set of security and integrity levels L.
The security and integrity levels L are partially ordered by the
relation "<". Multilevel security involving classifications and
categories, is but one example of a partial ordering of security
and integrity levels, so we will be dealing here with a moregeneral case. There are functions K and I whose domain is F and
whose range is L. The functions K and I return respectively the
security and integrity levels of their argument. A process is
assigned a security level and an integrity level for its lifetime
and may only invoke function references at these levels. (Note -
that a user may have several processes operating on his behalf
simultaneously, and may therefore operate at several security and
integrity levels.)

Finally, we introduce the relation "-->" on function
references. we say that

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 7

f -->f
1 2

(read as f transmits information to f) if there is any
1 2

possibility that the information returned by an invocation of f
2

could have been in any way effected by a prior invocation of f

In other words, there is some transmission of information from f

to f
2

The definition of multilevel security can now be stated
simply. For any f and f in F:

1 2

I f -->f ==> K(f) <= K(f) AND I(f) >= I(f) (PI) I
1 2 1 2 1 2

This simply states that if there is any possibility of
information transmission between two function references, then
the transmitting function reference must have a security level
less than or equal to the that of receiving function reference,
and the receiving function reference must have an integrity level
less than or equal to that of the transmitting function
reference.

In other words, information can only flow upward in security
or remain at the same level. A more formal definition is given
in the appendix. Similarly, information can only flow downward
in integrity or remain at the same level.

Unfortunately, the abstract nature of this definition. makes
it difficult to relate to constructs used in expressing system
designs. This gap can be bridged by formulating a slightly more
restrictive model in less abstract terms.

RESTRICTED MULTILEVEL SECURITY MODEL

Each state variable v contains some of the state information
of the system. The state variables together completely describe
the state of the system. The value of each state variable may be
modified by invocation of some function reference. Fach state
variable is assigned a security level and an integrity level
which is determined by extending the functions K and I to apply
to state variables as well as function references, therefore,
K(v) is the security level of state variable v and I(v) is the

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 8

f
integrity level of state variable v. The relation -- > relates
two state variables such that

f
v -- > v
12

means that an invocation of function reference f may cause the
value of v to change in a manner dependent upon the previous2
value of v In other words there is an information flow from v

to v caused by the invocation of f. Two predicates must also be
2

defined: the prefix form of -- >

f
--> V

means that an invocation of the function reference f may cause
the value of state variable v to change; the postfix form

f
v-->

means that the value returned by function reference f is
dependent on the prior value of state variable v. Note that for
any f , v , and .v

1 1 2

f f
v -- > v 2> -- > V

I 2 2

A multilevel secure system may now be redefined. For any
function reference f and state variables v, v , and v

1 2

wDL-TR 7809

KSOS VERIFICATION PLAN SECTION II Page 9

P2

f
v -- > => K(v) <= K(f) AND I(v) >= I(f) (P2a)

v -- > v => KlY) <- K(v) AND I(v) >= I(v)(P2b)
1 2 1 2 1 2

f
-- > v ==> K(f) <= K(v) AND 1(f) >= I(v) (P2c)

These properties assure that information flow is always upward in
security level, downward in integrity level, or remains at the

- same security or integrity level. Loosely speaking, the arrow
--> always points upward in security level and downward in
integrity level. P2a states that the value returned by an
invocation of a function reference at some security and integrity
levels contains information from state variables at only lower or
equal security levels or higher or equal integrity levels. P2b
assures that when information is transferred from one state

- variable to another by some invocation of a function reference,
that the recipient variable is at a higher or equal security
level or lower or equal integrity level than the originator
variable. P2c assures that the value of a state variable may be
changed by invocation of a function reference whose security
level is less than or equal to or whose integrity level is
greater than or equal to that of the variable, thereby
guaranteeing that security cannot be violated by the act of
invoking a function reference. A more formal model of properties
P2 is given in the appendix.

If state variables are equated to objects in the Bell and
LaPadula model, then properties P2 are approximately equivalent
to the simple secur4ty and integrity properties and the *-
property for security and integrity. In place of defining
reading and writing of state variables, we use functional
dependency. The new value of state variable (object) A being
functionally dependent upon the prior value of state variable B
is similar to saying that A is written and B is read. In many
cases the simple notion of a state variable being read or written
is not sufficient because it is important to know how the value
of that state variable effects the values of other state
variables (i. e., how the information is flowing).

There is one fundamental difference between the Bell and
LaPadula model and the properties P2. Bell and LaPadula consider
only operations that either read a value from an object or modify
the value of an object. Operations that both read a value from
an object and modify the value of an object can be obtained by

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 10

the composition of operations. The model presented above treats
operations that both read values and modify values as primitive.
This added consideration makes the properties P2 slightly more
complex but also makes the properties slightly mire general than
the simple security property and *-property of Bell and LaPadula.
If the case of operations that could both read and modify were
removed from the model, then property P2a would correspond to the
simple security property (and simple integrity property),
property P2c would correspond to the *-property, and property P2b
would be unnecessary.

RELAXATION OF THZ MODEL

Although the general definition of multilevel security
presented above is quite simple, it does not precisely model the
real world of military multilevel security. The model does not
take into account, for example, declassification of objects or
objects consisting of other objects with different
classifications. This same deficiency is true of the Bell and
LaPadula model. In order to deal with these necessary functions,
it is useful to consider some small changes to the model that
permit the additional capabilities. It is essential that these
changes be both small, in order that the model retain its
simplicity, and meaningful, so that the model is easy to
interpret. The proposed new functions require relaxations of the
model to some extent because the new functions violate the
existing model. For the remainder of this section, the model
represented by properties P2 will be termed the strict model to
distinguish it from the relaxed versions to be presented below.

Rather than formulating a distinct modification to the model
for each new function, it is more desirable to try to find a few
modifications that cover many cases. The most obvious such
modification corresponds to removing the *-property from the Bell
and LaPadula model, leaving only the simple security property.
Although, for reasons stated above, there is no direct eauivalent
to the simplp security property in the strict model, there is a
property that is equivalent. Before presenting this property, it
is necessary to reformulate properties P2 as follows:

WDL-TR7809

I__________

KSOS VERIFICATION PLAN SECTION II Page I1

P2'

f
v -- > ==> K(v) <= K(f) AND I(v) >= I(f) (P2a)

f
V -- >v ==> (P2b')
1 2

(K(f) <- K(v) ==> K(v) <= K(v))
1 1 2

AND (r(f) >= i(v) -=> i(v) >= I(v))
I 2

f

-- v ==> K(f) <= F (v) AND I(f) >= I(v) (P2c)

The only property changed is P2b. These properties are
equivalent to properties P2. This modified set of properties
will be called P2'. The equivalent of the simple security and
simple integrity properties is the combination of P2a and P2b'.
P2a states that reading up is not permitted. P2b' states that
downgrading is permitted for state variables whose security level
is less than or eaual to the security level of the operation or
for state variables whose integrity level is greater than or
equal to the integrity level of the operation. The *-properties
for security and integrity are equivalent to the combination of
P2b' and P2c. This means that the enforcement of either the
simple security properties or *-properties can be removed by
removing properties P2a or P2c respectively from this model.
Note that by discarding the *-property, the extent of the
security is changed: there is no longer confinement, and Trojan
horses are possible; however, there is still a meaningful form of
security and the simplicity of the model has not been
compromised.

Simply removing the *-property from the security model
relaxes the strict multilevel security constraints to permit many
of the desired additional capabilities. However, one can
anticipate needs for which the simple security and integrity
properties are still too restrictive. For these cases one can
permit a process to violate either multilevel security or
integrity or both. However, for these cases it is assumed that
such a process will enforce some other type of security that can
be verified. Therefore, full relaxation of multilevel security
should never be perceived by a user of the system. Such extreme
relaxation of the multilevel security restraints should be viewed
as an internal mechanism which allows the system to support a
variety of security policies.

Each process in the system must obey one of the constraints

-WL-1R7809

KSOS VERIFICATION PLAN SECTION II Page 12

from each of the following columns (i.e., one from column A and
one from column B)

Column A Column B

Strict multilevel security Strict multilevel integrity
Simple security property Simple integrity property
No multilevel security No multilevel integrity

Proving that the specification for any given operation is
consistent with any of the above requirements is no more
difficult than proving that the specification is consistent with
strict multilevel security and integrity. Iuch proofs are the
topic of the next section. -

SPECIFICATIONS AND PROOF TECHNIQUE

For the purpose of writing specifications we uS t-)
i :,,: - (Pt ti n nl Assertion Language, Roubine

and Robinson [77]). In SPECIAL, the visible functions of a
system design are partitioned into two types:

V-functions - return information about the state of the system
but does not change the state of the system,

OV-functions (including what is called O-functions) - change
the state of the system and may return information about the
state.

The actual state of the system is described by the "primitive" V-
functions, i. e., functions that return the value of a particular
state variable of the system. The primitive V-functions are
descriptive artifacts of the specifications and need not be
present in an implementation. The value of a primitive V-
function may be available to a user of the system if there is a
visible V-function that returns the value of the primitive V-
function. The values returned by visible V-functions are
functions of the values of only the primitive V-functions.

The specification of each visible function has two major
parts. The first part is the EXCEPTIONS, a list of boolean
valued expressions. If any of these expressions evaluates to
true for a given invocation of a function, then the function is
aborted with no change of state to the system. The values of
these exceptions are results of the function invocation since the
occurrence of an exception is reported to the caller of the
aborted function.

For a visible V-function, the second part of the function
specification is the DERIVATION, an expression whose value is the
result of the V-function. The value is returned only if all the

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 13

exceptions of the V-function invocation are false. For an OV-
function, the exceptions are followed by the EFFECTS, assertions
that relate the values of the state variables (primitive V-
function references) subsequent to the invocation of the OV-
function to the values of the state variables prior to the
invocation of that OV-function. Subsequent values of state
variables are denoted in effects by preceding the primitive V-
function references corresponding to those state variables by a
single quote ('). Prior values are unquoted.

Note that there is a very strong correlation between the
model underlying the semantics of SPECIAL and the model of a
system used to describe the strong multilevel security
properties, P2. The state variables of the security model are
references of the primitive V-functions of SPECIAL and the
function references, F, of the security mode] are references of

-the visible functions of SPECIAL. The values of function
*" references of the security model are the return values and

exceptions of the visible functions in SPECIAL. We have also
added a convention that prescribes that each primitive function
reference of a SPECIAL specification contain a formal parameter
that is the security and integrity levels of that function
reference. For visible V-functions, the security and integrity
levels of a function reference are enclosed in square brackets
(f...]) after the formal parameter list. The properties P2a,
P2b, and P2c can, therefore, be directly applied to
specifications written in SPECIAL. Illustrations of how
properties P2a, P2b, and P2c can be applied to specifications for
purposes of proof are given in Feiertag et al. 177] and
Neumann et al. [771.

There are two difficulties that make proof of the
consistency of the specifications and the properties P2
nontrivial. First, the specifications are written in terms of
function descriptions, not function reference descriptions. This
means that one must prove that the properties P2 hold for all
possible arguments to the functions described in the
specifications. In many cases some sets of arguments to a
particular function must be considered as distinct cases in order
to make the proof tractable. The appropriate partitioning of
cases recuires careful judgment. Second, in describing the
change of state caused by an OV-function invocation, SPECIAL
permits considerable freedom in expressing the relation between
the new values of the primitive V-function references and their
prior values. The use of recursive functions and universal and
existential cuantifiers makes it undecidable in general to
determine if a new value of a primitive V-function reference is
functionally dependent upon the prior value of some other

r primitive V-function reference. Since functional dependency is
generally undecidable, we have derived a set of decidable
dependency rules that are used to determine if the value of some
quoted primitive V-function reference (new value of a state

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 14

variable) is functionally dependent upon some unquoted primitive
V-function reference (prior value of a state variable) for the
most common of the decidable cases. When these rules cannot be
definitively applied, a functional dependency is assumed. These
rules are similar to the elimination rules of Millen [76]. For
the specifications we have examined, we have had no difficulty in
deriving an acceptable set of such rules. The example given
later illustrates the proof technique and utilizes a particularly
simple set of these decidable dependency rules.

EXAMPLE

In order to illustrate the proof technique, a proof of a
representative operation will be presented. Fig. 2.1 is a
specification of the module "files" that is part of the KSCS
emulator. As this module was written during the early design
stages, it is subject to modification and and may not appear in
similar form in the final design. However, the module may be
considered representative in style, size, and complexity of
modules in the KSOS design, being perhaps a little simpler than
most. The proof of security of the O-function "write" will be
examined. The proof of properties P2a, P2b, and P2c require the
identification of all instances of primitive V-function
references within the operation to be proved. Many such
instances are enclosed in the macro facilities of SPECIAL (namely
the DEFINITIONS, EXCEPTIONS OF, and EFFECTS OF) so those macro
definitions containing primitive V-function-references are
expanded yielding the specification for the "write" operation
given in Fig. 2.2. (Note that in some cases of definitions, it
is possible to assign a security level to the definition itself
and treat the definition as a primitive V-function. This
shortens the proof process somewhat. However, this technique
will not be discussed here).

Each function reference must be assigned a security and
integrity level, collectively called an access level. In order
to guarantee that the levels of function references do not change
(a requirement of the multilevel model), one of the arguments to
each function reference will be its access level. By convention,
the access level argument will be the formal parameter in the
definition of the function that is named "level". The relation
"<=" is defined for access levels by the definition
"write allowed" and the relation ">=" is defined for access level
by the-definition "read allowed". In order to avoid repeating
these definitions in alT modules of the specifications, the
definition of access level and its associated relations will be
encapsulated into a separate module in the final specifications.

The next step in the proof process is to generate a set of
theorems whose validity implies properties P2a, P2b, and P2c.
The theorems generated for the "write" operation are given in

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 15

Fig. 2.3. These theorems are derived from the specifications
using knowledge of the syntax of SPECIAL and the decidable
dependency rules (which embody the semantics of SPECIAL). An
examination of two of these theorems serves to illustrate the
theorem-generating step of the proof process. Properties P2a,
P2b, and P2c must be proved for each visible function reference,
i.e., the proof must be carried out for all possible set of
arguments, hence the universal quantification of all the
arguments in each theorem. Consider the first theorem of
Fig. 2.3. This theorem is part of the proof of property P2a
which states that the value returned by a visible function
reference can be dependent upon only the values of primitive V-
function references at lower security levels. Since the

. -occurrence of an exception is a returned value, all the primitive
V-function references cited in exceptions must be considered.
The first theorem of Fig. 2.3 deals with the first exception
which cites the primitive V-function i nlink. The level of all
references to the visible function "wrTte" is "level", and the
level of all references to this citation of i nlink is "1". The
relationship to be established is that "level" is greater than or
equal to "1" or, stated in terms of the definitions, that
read allowed(level, 1) is true. This condition is the stated
consequent of this theorem. The value of the SOME construct in
this expression is potentially dependent upon all possible "I"
because the SOME construct implies a universal quantification,
hence the universal quantification of "l" in the theorem (a
decidable dependency rule). However, the value of the exception
is eependent on values of i nlink only when
read allowed(level, 1) is t'ue. This follows because
read-allowed(level, 1) is a conjunct of i nlink(fid, 1) and when
the ?ormer is false, the value of the latter is irrelevant. This
fact results in the qualification in the theorem (another
decidable dependency rule). This latter rule can be stated more
explicitly as: when an expression citing no primitive V-function
references is a conjunct to an expression citing some primitive
V-function references, then the former expression will always be,
in the generated theorems, an antecedent to any consequents
evolving from the latter expression

Consider now the third theorem of Fig. 2.3. Again note the
universal quantification over the arguments to the visible
function "write" due to the necesity of proving the theorem for
each visible function reference. This theorem is used as part of
the proof of property P2b, which states that the level of each
quoted primitive V-function reference must be greater than or
equal to the level of each unquoted primitive V-functionreference upon which it is dependent. This particular theorem
deals with the dependency of the value of the quoted reference to
h file upon the value of the unquoted reference to h file in the
effects. Note that there are two unquoted references to h file
in the effects and that in general each would necessitate
separate theorem, however, in this case the two necessary

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 16

theorems happen to be identical. Note that the antecedent in
this theorem is actually the conjunction of the negation of the
two exceptions. This is because the semantics of SPECIAL demand
that the exceptions be false for the effects to occur (another
decidable dependency rule). The consequent of this theorem
simply expresses the desired relationship between the levels of
the quoted and unquoted primitive V-function references to
h file.

The first two theorems of Fig. 2.3 are necessary to prove
property P2a, the next two theorems are for P2b, and the final
theorem is for P2c. The proofs of the first three theorems are
trivial, as they can be shown true directly from the axioms of -

the logical operations with no deduction. The last two theorems
require only minimal amounts of deduction. These theorems are
representative of most theorems generated using this technique.
They indicate that only very simple theorem proving capability is
necessary and that the automation of the theorem-proving step of
the proof process (the final step) is desirable.

A simple upper bound can be placed on the number of theorems
generated for a given visible function. Using the following

, - definitions:

nxv - the number of citations of primitive V-functions in the
exceptions

nqv - the number of citations of quoted primitive V-functions
in the effects

nuv - the number of citations of unquoted primitive V-

functions in the effects

the number of theorems generated will be at most

nxv + (nqv + 1) * nuv + nqv

For the "write" operation this upper bound is 13, whereas the
actual number of theorems is 5. In this case the failure to
reach the upper bound is due to the absence of a return value
(other than the exceptions) and that some of the theorems happen
to be identical and have not been replicated.

It is important to realize that this particular example is
probably simpler than the proof of a typical visible function in
a system such as KSOS. A more representative example is likely
to contain more DEFINITIONS, EXCEPTIONS OF, and EFFECTS OF
expressions that contain citations of primitive V-functions
thereby yielding a much greater number of such citations in the
expanded form of the function specification, hence a much greater
number of theorems. In fact, the listing of theorems is

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 17

undoubtedly going to be much longer than the listing of the
specifications from which the theorems are derived. The saving
grace is that the proof of the theorems are rather simple and are
amenable to automation. In addition, the use of the decidable
dependency rules makes generation of the theorems from
specifications amenable to automation as well. The entire proof
of design could therefore be automated.

However, this automation depends, in part, on the discovery
of a suitable set of decidable dependency rules. A suitable set
of rules sufficiently complete to allow generation of theorems
that can be easily proved depends upon the nature of the system
to be proved and the specification writing style of the authors

.-- of the specifications. Experience with the proof technique will
enable us to arrive at such a sufficiently complete set of rules
that are applicable to KSCS as well as other systems.

ADDITIONAL CONSIDERATIONS

The problem of using time as an illicit information channel
has plagued the designers of secure operating systems for many
years. The specification of the FILES module given above does
not mention time at all, even though it is always an observable
piece of information in real systems. This means that the
specifications do not fully describe the implementation. The
concept of time could be introduced into the specifications.
Unfortunately, in order to do this and still be consistent with
the multilevel security model, the resulting design yields aninherently inefficient system. This same fundamental problem has
been identified by Lampson (73], Lipner [75], and Millen [761.

We have illustrated in an informal manner how to prove the
security of a system design. The formal proof is quite
straightforward but requires many steps, and is quite lengthy.
In general, the formal proof of multilevel security of a given
set of specifications will be longer than the specifications
themselves. This raises the possibility that the proof may be
more error-prone than the specifications. It is, therefore,
desirable to automate the proving process. The verification
conditions that must be generated by an automated prover to prove
properties P2a, P2b, and P2c can be derived from the
specifications, the syntax of SPECIAL, and the rules for
potential dependency. The verifications thus generated, although
lengthy, are quite simple, and require only a fairly
unsophisticated theorem prover. In some cases, human
intervention may be required to supply lemmas to aid the theorem
prover. A proof checker program can be included to double check
the validity of the output of the theorem prover. If proof of
security is to become a meaningful way to verify systems, some
form of automation is essential.

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 18

CONC LUS IONS

We have presented two formal definitions of multilevel
security. The first mode: is a generalization and abstraction of
the Bell and LaPadula model, the Walter model, and the second
model presente6 here. Each oF the tw :o:":.1 is particularly
well suited to specific needs of the design and proof process.
The first model, besides providing a more general definition of
multilevel security, is very simple, enabling the reader to
verify easily that the definition is consistent with intuitive
understanding of multilevel security. The second model relates
directly to techniques used to specify systems. It is easy to
prove the correspondence between the specifications of a system
and this model. This proof technique can be automated, a step
that is essential in enhancing the credibility of the proof. we
have demonstrated the generality and simplicity of the general
model and have described the technique used to prove the
consistency of specifications in SPECIAL with the restricted
model. It should be possible to automate this proof technique.
This multiple model approach, i. e., models describing the
concept at various levels of abstraction, appears to be
advantageous in providing both a simple definition (the first
model) that can be easily related to intuitive notions of
multilevel security, and a set of principles (the second model)
that can be directly related to the design of a multilevel secure
system.

The security proof of a system design is only one part of
proving the security of an actual running system. However,
proving the security of the design alone, before implementation
is attempted, can be far more cost effective than discovering the
security flaws during the implementation or operation of the
system, or having an insecure system.

APPENDIX
FORMAL MODELS

A multilevel system is defined to be the following ordered
10-tuple:

<S, s 0 , L, "<", F, K, I, R, N r N >
0 r s

where the elements of the system can be intuitively interpreted
as follows:

S - States: the set of states of the system

s - Initial state: the initial state of the system; s G S
0 0

WDL-TR7809

- KSOS VERIFICATION PLAN SECTION II Page 19

L - Security levels: the set of security levels of the
system

- Security relation: a relation on the elements of L that

partially orders the elements of L

F - Visible function references: the set of all the
externally visible functions and operations (i.e.,
functions and operations that can be invoked by
programs outside the system); If a function or
operation requires arguments, then each function
together with each possible set of arguments is a
separate element of F (note that in the remainder of
this document externally visible functions and
operations will be referred to collectively as visible
functions (or functions) even though operations are not
functions in the mathematical sense)

K - Function reference security level: a function from F to
L giving the security level associated with each
visible function reference; a process may invoke only
function references at the security level of the

r process; K:F->L

I- Function reference integrity level: a function from F

to L giving the integrity level associated with each
visible function reference; a process may invoke only
function references at the integrity level of theprocess; I:F->L

R - Results: the set of possible values of the visible
function references

N ,N - Interpreter: functions from FXS to R and S that define
r s how a given visible function reference invoked when the

system is in given state produces a result and a new
state; N :FXS->R and N :FXS->S.

-r s

In order to define multilevel security and integrity, the
following definitions are useful:

T - the set of all n-tuples of visible function references or,
in other words, all possible sequences of operations

T a F

M -the function whose value is the state resulting from the
given sequence of operations starting at some given state

M:SXT->S

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 20

D - the function whose value is the set of state variables
whose values differ in the given states

*

D:SYS->V

E - the function whose value is the sequence of operations
1 that results when all the operations whose level is not

less than or equal to the level "i are removed from the
given sequence of operations

E :T->T
1

1
E -the function whose value is the sequence of operations

that results when all the operations whose level is not

greater than or equal to the level *10 are removed from
the given sequence of operations

1
E :T->T

Multilevel security and integrity can now be defined as
follows:

1
I (VfEF,sGS,t ,t GT)

1 2

1 I(f) I (f) -

E (t)=E (t) AND E (t)-E (t) (PI)
I K(f) I K(f) 2 1 2

I --> N (f,M(s,t))=N (fM(s,t))
I r I r 2

Informally, if two sequences of operations are each applied to a
system in the same state and if these sequences differ only in
operations whose security level is not less than or equal to some
level, then any operation of that level that is invoked
immediately following either of the two sequences will return the
same result. In other words, the operations whose security level
is not less than or equal to this level cannot effect results
visible to the level. For integrity, the interpretation is that
operations whose integrity level is not greater than or equal to
this level cannot effect results visible to the level.

This formal definition simply expresses the essence of the
informal definition given above: information can only flow upward

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 21

in security or remain at the same level. The formal property,
P1, expresses this definition in torms of only the externally
visible behavior of the system without regard to invisible
internal properties. There is no need to identify objects,
distinguish read and write operations on objects, or assign
security levels to objects in this definition as is done in the
Bell and LaPadula and the Walter models. It is the simplicity of
this formal definition that makes it easily comprehensible to the
reader.

The state of a system is determined by the values of the
state variables of the system. That is, the state of the system
is the cross product of all the state variables of the system
where each state variable is a set of values that can be assumed
by the state variable. The function G(V) defines the security
level to which the state variable V is assigned, and H(V) defines

*the integrity level of V. The following useful functions can now
be defined:

P :S->) V is a function that takes a state to that
1 VVIG(V)=l part of the state consisting of the

ordered tuple of values of state
variables assigned to security level 1

1

P :S-> V is a function that takes a state to that
w VVIH(V)=l part of the state consisting of the

ordered tuple of values of state
variables assigned to integrity level 1

0 :S->. X V is a function that takes a state to the
1 VVIG(V)<=l tuple of values of state variables

assigned to a security level less than or
equal to 1

1
Q :S-> Y V is a function that takes a state to the

- VVIH(V)>-l tuple of values of state variables
assigned to an integrity level greater
than or equal to 1

W :S-> y V is a function from a state to the tuple
1 VVI(G(V)>=l) of values of state variables assigned to

a security level not greater than or
equal to 1

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 22

1
W :S-> Y V is a function from a state to the tuple

VV{V(H(V)<-l) of values of state variables assigned to
an integrity level not less than or eaual
to 1

It is now possible to define three new security properties
whose conjunction is somewhat stronger than P1 above:

P2

(VfGF) (3a) (VseS) (P2a)

N (f,s) = a(Q (s), C (s))
r K(f)

(VfeF,lGL) (3a,b) (VsGS) (P2b)1 1
I P (N (f,s)) - a(Q (s)) AND P (N (f,s)) -b(Q (s))

1 s 1 s

(VfeF,ses) (P2c)
I(f) 1(f)

W (s) -W (N (f,s)) AND W (s) = W (N (f,s))
K(f) K(f) s s

where "a" and "b" represent arbitrary functions. The first
property (P2a) states that the result of a function invocation
can be functionally dependent only upon state variables of
security level lower than or equal to the security level of the
function reference and integrity level greater than or equal to
the integrity level of the function reference. The second
property (P2b) states that the value assumed by a state variable
at some security and integrity level due to the action of some
function invocation can be functionally dependent only upon state
variables at a lower or equal security level and greater or equal
integrity level respectively. The third property (P2c) states
that the values of state variables at some security and integrity
level can be changed only by function invocations at a lower or
ecual security level and greater or equal ir'egrity level
respectively. The proof that properties P2a, P2b, and P2c imply
property P1 is done by induction on the length of the sequence
E(t, 1) for each level 1 and sequence of visible function
references t. The proof is described in Neumann et al. [77].

As an alternative to these definitions, the relations and
predicates used to describe the model informally in the body of
the plan above, can be described precisely to yield a formal
definition of security. The two relations and two predicates
described above can be formally defined as:

WDL-TR7809

KSOS VERIFICATION I-.AN SECTION II Page 23

I f --> f <=->
I 2

I (3t ,t GT)
1 2
N (f ,M(t ,1(<f >,l(t ,s))))

-,--r 2 2 1 0
~- N (f ,M(t ,M(t ,s)))

r 2 2 1 0

If
V -- > V <==>

1 2
S(3s ,s GSID(s ,s)={v 1)
I1 2 1 2 1
I-v GD(N (f,s),N (f,s))

2 s I s 2

I f
V -- > <==>
(-3s ,s ESID(s ,s)={vl)

1 1 2 1 2
N (f,s) N (f,s)

r 1 r 2

f
-- > v <=

(3sGS)
I v D(s,N (f,s))
I s

REFERENCES

Ames and Oestreicher (77] S. R. Ames and D. R. Oestreicher,
Design of a Message Processing System for a Multilevel Secure
Environment, unpublished (October 1977).

Bell and LaPadula f741 0. E. Bell and L. J. LaPadula, Secure
Computer Systems: Mathematical Foundations and Model, MITRE
Corp., Bedford MA (September 1974).

W - 7

WDL-TR 7809

KSOS VERIFICATION PLAN SECTION II Page 24

Biba [771 K. J. Biba, Integrity Considerations for Secure
Computer Systems, MTR-3153 Rev. 1, MITRE Corp., Bedford MA
(April 1977).

Feiertag et al. [77] R. J. Feiertag, K. N. Levitt, and
L. Robinson, Proving Multilevel Security of a System Design,
Proceedings of the Sixth ACM Symposium on Operating Systems
Principles, Purdue Univ., West Lafayette, IN (November 1977).

Lampson [73] B. W. Lampson, A note on the confinement problem,
CACM vol. 16 no. 10, pp. 613-615 (October 1973).

Lipner [75] S. B. Lipner, A comment on the confinement problem,
The MITRE Corporation, Bedford MA (1975).

Millen (76] J. K. Millen, Security Kernel Validation in Practice,
CACM vol. 19 no. 5, pp. 243-250 (May 1976).

Neumann et al. (77] P. G. Neumann, R. S. Boyer, R. J. Feiertag,
K. N. Levitt,L. Robinson, A Provably Secure Operating System:
the System, its Applications, and Proofs, Stanford Research
Institute, Menlo Park CA (February 1977).

Roubine and Robinson [77] 0. Roubine, L. Robinson, SPECIAL
Reference Manual, 3rd edition, Stanford Research Institute,
Menlo Park CA (January 1977).

Walter et al. [75] K. G. Walter, W. F. Ogden, J. M. Gilligan,
D. D. Schaeffer, S. I. Schaen, D. G. Shumway, Initial
Structured Specifications for an Uncompromisable Computer
Security System, Case Western Reserve University, Cleveland OH
(July 1975).

-

WD L-TR 7809

KSOS VERIFICATION PLAN SECTION II Page 25

MODULE files

TYPES

clearance: f INTEGER i 1 0 < i AND i <- max clearance);
category set:
f VECTOR-OF BOOLEAN cs I LENGTH(cs) - number ofcategories 1;
access level:
STRUCT-OF(clearance security clearance;

category set securTty categories;
clearance integrity_clearance;
categoryset integritycategories);

DECLARATIONS

file_ id fid;

*PARAMETERS

INTEGER superuser id;
- INTEGER maxclearance, numberofcategories;

DEFINITIONS

BOOLEAN read allowed(access level subject_al, object_al)
IS subjectal.securityclearance

>- object al.security clearance
AND subject_al.integrity clearance

<- object al.integrity clearance
AND(FORALL INTEGER i 1 0 < i AND i <- number of categories:

object al.security categories[i]
-> subject al.securTtycategoriesfi)

AND(subject al.integrity categoriesfi]
-> objeci al.integritycategoriesiI));

BOOLEAN write allowed(access level subject_al, objectal)
IS read alfowed(object al, subject_al);

access level read level(fid; access level level)
IS SOME access-level I I

read allowed(level, 1) AND i nlink(fid, 1) > 0;
BOOLEAN is file owner(fid; INTEGER Uid; access level level)

1S (uid- i Uid(fid, read level(fid, level)i)
OR (uid ; super user id);

BOOLEAN file exists(fTd; access level level)
IS read level(fid, level) -- ?;

Fig. 2.1 - Specification of files (continued on next page)

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 26

EXTERNALREFS

FROM metafiles:
VFUN i uid(fid;accesslevel level) -> INTEGER uid;
VFUN i nlink(fid; accesslevel level) -> INTEGER links;
file id: DESIGNATOR;

FUNCTIONS

VFUN h file(fid; access level level) -> VECTOR OF CHAR c;
HIDDEN;
INITIALLY

OFUN f write(fid; INTEGER offset; VECTOROF CHAR data;
INTEGER uid) (accesslevel level]

EXCEPTIONS
" file exists(fid); S(-has write permission)
write allowed(level, read level(fid, level));

EFFECTS
'h file(fid, read level(fid, level))

= VECTOR(FOR i
FROM I
TO MAX({ LENGTH(hfile(fid,

read level(fid, level))),
offset + LENGTH(data) 1)

IF i < offset OR i > offset + LENGTH(data)
THEN h file(fid, read level(fid, level))[i]
ELSE dita[i - offset]T;

Fig. 2.1 - Specification of files (continued)

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 27

VFUN f read(fid; INTEGER offset, co~it, uid)(access level level]
-> STRUCT OF(INTEGER counted; VECTOROF CHAR data) rs;

DEFINITIONS
INTEGER file length

IS LENGTH(h file(fid, read level(fid, level)));
EXCEPTIONS

file exists(fid, level);
DERIVATION

LET VECTOR-OF CHAR v -(IF offset + count > filelength
THEN
VECTOR(FOR i FROM I

TO file length - offset:
h file(?id,
iFead level(fid, level))
foffset + i])

ELSE VECTOR(FOR i FROM I TO count
h file(fid,
Tead level(fid, level))
[offset + il))

IN STRUCT(LENGTH(v), v);

OFUN f trunc(fid; INTEGER uid)(access level level];
$(this cuts a files contents bask to ?)

EXCEPTIONS
- file exists(fid, level);- writi allowed(level, read level(fid, level));
- is file owner(fid, uid, level);

EFFECTS
h file(fid, read level(fid, level)) a ?;

VFUN f length(fid)[access level level] -> INTEGER length;
EXCEPTIONS

" file exlsts(fid, level);
DER IVATI ON

LENGTH(hfile(fid, read level(fid, level)));

ENDMODULE

Fig. 2.1 - Specification of files (continued)

WDL-TR7809

NSOS VERIFICATION PLAN SECTION II Page 28

OFUN f write(fid; INTEGER offset; VECTOR OF CHAR data;
INTEGER uid)[access level level]

EXCEPTIONS
? SOME access level 1 1

read allowid(level, 1) AND i nlink(fid, 1) > 0;
" write allowed(level,

SOME access level 1 1
read allowid(level, 1)
AND T nlink(fid, 1) > 0);

EFFECTS
'h file (fid,

SOME access level 1 1
read allowed(level, 1)
AND T nlink(fid, 1) > 0)

- VECTOR(FOR i
FROM I
TO MAX([LENGTH(

h file(fid,
SOME access level 1 I
readallowid(level, 1)
AND
i nlink(fid, 1) > 0)),

offset + LENGTH(data) 1)
IF i < offset OR i > offset + LENGTH(data)
THEN h file(fid,

SOME access level 1 1
read allowed(level, 1)
AND T nlink(fid, 1) > 0) [i]

ELSE data[i - offsgt]);

Fig. 2.2 - Expanded form of "write" operation

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 29

FORALL fid; INTEGER offset; VECTOR OF CHAR data; INTEGER uid;
access level level:

FORALL access level 1:
read allowe3(level, 1) => read allowed(level, 1);

FORALL fid; INTEGER offset; VECTOROF CHAR data; INTEGER uid;
access-level level:

" SOME access level 1 1
read allowed(level, 1) AND i link(fid, 1) > 0)

FORALL access level 1:
tread_allowed(level, 1) -> read allowed(level, 1));

- FORALL fid; INTEGER offset; VECTOROF CHAR data; INTEGER uid;
accesslevel level:
- SOME access level 1 1

read allowed(level, 1) AND i link(fid, 1) > 0)
- AND

write allowed(level,
SOME access level 1 1

" read allowed(level, 1)
AND T nlink(fid, 1) > 0)

a> read allowed(SOME access level I I
- -read allowed(level, 1)

AND T nlink(fid, 1) > 0,
SOME access level 1 I
read allowed(level, 1)
AND i nlinkffid, 1) > 0);

Fig. 2.3 - Theorems for proving security of "write"
(continued on next page)

WDL-TR7809

KSOS VERIFICATION PLAN SECTION II Page 30

FORALL fid; INTEGER offset; VECTOR OF CHAR data; INTEGER uid;
access level level:

- SOME access level 1 1
read allowed(level, 1) AND i nlink(fid, 1) > 0)

AND
write allowed(level,

SOME access level 1 1
read allowid(level, 1)
AND T nlink(fid, 1) > 0)

-> FORALL access level 1:
read allowedTlevel, 1)
-> read allowed(SOME access level 1 1

read allowid(level, 1)
AND T nlink(fid, 1) > 0,
1);

FORALL fid; INTEGER offset; VECTOR OF CHAR data; INTEGER uid;
access-level level:

"(? - SOME access-level 1 1
read allowed(level, 1) AND i link(fid, 1) > 0)

AND
write allowed(le-vel,

SOME access level 1 1
read allowed(level, 1)
AND T nlink(fid, 1) > 0)

-> read allowed(SOME access-level 1 1
read allowed(level, 1)
AND Tnlink(fid, 1) > 0,

level);

Fig. 2.3 - Theorems for proving security of "write" (cont'd)

;4ML-TR7809

ISECTION III
SYSTEM SECURITY STRUCTURE

The proposed KSOS system provides several different

protection mechanisms and enforces several security policies. In
order to understand how these mechanisms relate to one another
and how they interact, it is necessary to have a clear picture of
the overall structure of the system. The syster has three basic
parts:

1. the kernel,

2. the emulator, and

3. the program library.

The kernel provides the basic protection mechanisms and enforces
the desired security policies. Since the enforcement of the
security policies is dependent upon the correct design and
implementation of the kernel, it is necessary that the
correctness of the kernel be verified. The emulator presents the
desired system interface to the users and library programs. In
the case of this project, the desired system interface is to
resemble that of the UNIX*tm operating system. However, other
emulators could be written to provide other system interfaces, or
the emulator could be entirely left out making the system
interface be the kernel interface. The program library is simply
a collection of utility routines to be used as the users of the
system see fit. In this project the program library will be
similar to the UNIX*tm system proqram library with the possible
addition of some programs that exploit the security environment.

In choosing the security structure for KSOS, the intent has
been to permit the most general and flexible interface possible
that is meaningful within the context of multilevel security and
that can be efficiently implemented. A more general structure,
such as a general domain oriented structure, could not be
efficiently implemented within the constraints of the PDP-11
architecture. The next few paragraphs explain the security
provided by the kernel and emulator interfaces in greater detail.

THE KERNEL INTERFACE

The primary purpose of the kernel, from the point of view of
security, is to enforce multilevel security. A formal definition
of multilevel security is given in Section II of this report.
This definition is called property Pi. It states that
information in the system may flow only upward in security level
or remain at the same level. We will call multilevel security as

WDL-TR7809

KSOS VERIFICATION PLAN SECTION III Page 32

defined by P1 strict multilevel security. The security
properties P2 are actually slightly stronger and more strict than
P1, however, the difference is so minor that for the purposes of
this discussion they will be considered equivalent. Therefore,
P1 and P2 are definitions of strict multilevel security. We
would like our kernel to enforce strict multilevel security,
however, there are many applications for which strict multilevel
security is too restrictive, one example being the necessity to
downgrade information in security level. Therefore, we find it
necessary to allow the relaxation of the strict multilevel
security rules under certain circumstances. The particular
relaxations of strict multilevel security we have chosen were
given in the previous section. All the relaxations chosen have
the property that they retain some meaningful measure of security
and that the security so obtained can be demonstrated to hold for
the entire system by proving the correctness of the kernel. The
enforcement of the various types of security of the system is
illustrated by Fig. 3.1 which shows the function space of the
kernel. Some of the kernel functions obey strict multilevel
security, i.e., processes invoking only these functions cannot
violate the properties of strict multilevel security. These
functions are represented by the white area of the kernel
function space. Functions in the grey areas obey less strict
multilevel security, i.e., processes invoking functions in the
grey areas are not subject to strict multilevel security, but
still cannot violate certain less restrictive security rules.
The regions of the kernel function space in which each process
may operate is determined when the process is created and so it
is possible to create processes that obey strict multilevel
security and processes which obey other less strict security.
Many applications may require process that obey only strict
multilevel security and these applications will be multilevel
secure in the strict sense.

There are a few kernel function invocations intended for use
only by the emulator. The purpose of these special function
invocations is to permit the emulator to protect its programs and
data bases from user programs. These functions are represented
by the darkest area of Fig. 3.1. (On a PDP-11 these special
functions could be implemented efficiently by having the emulator
run in supervisor mode.)

Most of the functions provided by the kernel will be
implemented using a synchronous interface, i.e., the return of
the invoked function to the calling program implies that the
function has been completed. Some functions may be implemented
by programs executing in parallel to the calling program via an
asynchronous interface (e.g., IPC). In this latter case, the
return of the invoked function may not imply completion of the
function. The synchronous and asynchronous interfaces are
separated by the dotted line in Fig. 3.1. The asynchronous
interface supports security in the same manner as the synchronous
interface.

WDL -rR7809

% KSOS VERIFICATION PLAN SECTION III Page 33

THE EMULATOR INTERFACE

The emulator is constructed using the functions of th.
kernel. The emulator hides the special functions provided i.. the
kernel for use by the emulator, but all the other functions of
the kernel are potentially available to users in addition to the
functions provided by the emulator. However, it will be possible
to selectively restrict the access of processes to certain kernel
or emulator functions. For example, certain processes may be
denied access to kernel functions directly and may only have
access to emulator functions; certain processes may be permitted
access only to the functions of the kernel that enforce strict
multilevel security, thereby assuring that the process operates
in a strict multilevel secure fashion. The function space as
seen by a user process is depicted in Fig. 3.2. In this figure
the darkest region represents the functions implemented by the
emulator. Access by each process to any of the regions in the
function space may be restricted at the time of process creation.
It is possible that, within a process, the emulator has access to
regions in the kernel function space that the user programs do
not. This feature makes it possible to have the emulator enforce
some security policy that the kernel does not enforce, such as a
policy that calls for the downgrading of the security level of
information but only under certain special circumstances.

WDL-TR7809

Page 34

Synchronous Asynchronous
Interface Interface

Stric S

Relaxed MLS
(privileged)

Special
Emulator
Interface

Figure 3.1 - Kernel Function Space

Emulator
Interface

Function 3.2 -Emulator Function Space

IWL-TR7809

..I,, , , I I,." il". . .: -

SECTION IV
LANGUAGE SELECTION FOR KSOS IMPLEMENTATION

This section considers the task of selecting a programming
language for the proposed implementation of KSOS. Desired
characteristics of an appropriate language are identified. In
fact, these characteristics are essentially a subset of those of
the [July 1977 revised] IPONMAN specifications, although generally
some accommodation of the SRI methodology is required. Fuclid,
Modula, Pascal, UCLA Pascal, Concurrent Pascal, Gypsy, C, and ILPL
are considered here. None of these languages currently meets all
of the desired requirements. However, Euclid and Modula appear to
be particularly strong candidates, the former subject to the
suitability of the implementation currently in progress, and the
latter subject to support of certain language extensions currently
in orogress.

The main conclusion here is that selection of the
implementation language need not be made during Phase I, and can
safely be put off until about 1 July 1978. Instead of choosing a
language at this time, a decision procedure is given as to how that
selection should be made. This procedure is based on the analysis
of this section, but will use knowledge expected to be available in
July. There are several reasons why such an approach is
appropriate. First, no substantial amount of code (except for
preliminary exploration) will be written until well into Phase IT.
Second, more will be known around July about the current Euclid
compiler development and about the current effort to extend the
Modula language and its compiler. Both of these efforts are
scheduled to be sufficiently well along by then. Third, there
appears to be relatively little effort required before July by the
-KSOS implementation team in order to assure the availability of
suitable support for the chosen language. (However, it may
eventually be desirable to develop a profiler-debugger.) Thus,
overall, the impact of deferring the language choice remains
negligible, at least until about July.

OVEPVIEW

Table 4.1 summarizes the requirements for a FSOS programming
language (KPL) suitable for implementing the FSOS kernel and
UNIX*tm emulator. These recuirements are similar to a subset of
the IRONMAN requirements, as seen from a summary comparison of the
two sets of requirements given in Table 4.2.

Various programming languages are compared. Table 4.3
provides a comparative summary of how well each language satisfies
the various requirements of Table 4.] at present, and also
indicates anticipated improvements. It is seen that Euclid and
Modula are the strongest candidates when projected to the time at
which the programming language is needed, with Euclid having a
distinct edge based on its current development status. Th.L
section then concludes with some XSCS implementation
considerations, illustrated by the sketch of a Euclid program for
the example module of Section II (Figure 4.2).

WDL-TR 7809

KSOS VERIFICATION PLAN SECTION IV Page 36

FEOUTREMENTS

The requirements for the KSOS programming language are
summarized in Table 4.1. These reauirements contribute in various
ways to the intrinsic security of the system, the intrinsic
correctness of the implementation, the ease of coding, the
understandability of the programs, and the ease of program
verification. It should be noted that many of these requirements
are in fact highly beneficial, but not in each case mandatory.
However, the additional effort necessitated by their absence is in
some cases considerable.

It is difficult to rank the requirements in order of
decreasing importance, since their consecuences are diverse.
as follows.

* The language must be well supported by an effective compiler
capable of producing efficient code for the CEC PDP-11/70.
Without such support, all other reouirements are meaningless.

* Program-defined data types are desired in order to support
date abstraction for virtual resources. Encapsulation of
these data types is desirable to avoid a significant and
pervasive type of security flaw (see below), and to increase
provability.

• Dynamic creation and deletion of objects of program-defined
types is highly desirable, although not essential. Dynamic
creatability considerably increases the intrinsic safety of
implementation, for example by sharply reducing the likelihood
of data residues due to incomplete deallocation, by enforcing
encapsulation of the code that performs allocation and
deallocation of virtual resources. It also increases the
readability of code, and simplifies the verification effort.

* The language should be strongly typed and type-safe. However,
a controllable facility for explicit type conversion or for
union types is necessary, for example, when treating a stack
of mixed-type elements.

* Multiprogramming must be supported --at least in some simple
form.

*The writing of machine-dependent pieces of code must be
supported, particularly to manage input-output and secondary
storage devices.

* Scoarate compilation is operationally highly desirable. As e
simple example, the operating system must be compilable
separately from user programs. Also, the kernel, the
non-kernel security-related software, and the ONIX*tm emulator
should be separately compilable. Further, during devclopme.nt,
it is very useful if pieces of the kernel or of the emulator
can be separately compiled, even if in a production version

WDL-TR 7809

p

KSCS VERIFICATION PLAN SECTION IV Page 37

they are not. (The compiler should be able to compile the
system as a unit as well as in separate pieces.)

* Finally, although it is not an immediate concern of the KSOS
effort, the language should do very little that would hinder
formal verification of the consistency between programs and
formal specifications. In fact, whether or not such
verification is ever attempted, constraining a language such
that its code could be reasonably verified can yield many
intrinsic benefits in terms of the reliability,
understandability, and maintainability of the resulting
system.

-A somewhat orthogonal view of the requirements for a KPL is
motivated by some pragmatic considerations of existing (insecure)
systems. Bisbey and his colleagues at ISI have catalogued and
studied various characteristic security flaws that in the past have
plagued systems attempting to be secure. (See Bisbe et al. (75],
Bisbey et al. f76], Carlstedt (76], Carlstedt et al. (75],
Hollingworth and Pisbey f76].) They have focused on three classes
of flaws, namely the inconsistency of data over time, the
nonvalidation of critical conditions and operands, and residues
resulting from incomplete deallocation. They have also identified
other categories, namely problems associated with serialization,
interrupted atomic operations, exposed representations (noted
above), aliasinq, incorrect domain usage, and incorrect operation
selection. In general, through a combination of good methodology,
good language design, good compiler diagnostics, and appropriate
restrictions on language use, many of these flaws can be
cateqorically avoided.

An analysis of how the use of the SRI methodology and the
appropriate choice of programming languages can contribute to the
avoidance of these characteristic flaws is found in Neumann [78].
The methodology itself contributes to the avoidance of most of
these flaws with respect to the design, by constraining the way in
which specifications are written (without constraining what may te
specified.) The suitable choice of programming language can have
similar impact on the implementation, by constraining the way in
which programs must be written. For example, data inconsistency of
parameters cannot arise in specifications; in implementation, it
can be avoided by recuiring call-by-value. Exposed representations
are avoided in the design by the specification language, and
further avoided by suitable languale support for data abstraction.
Nonvalidation is largely avoided by strong type checking, explicit
subtypes (e.g., ranged variables), and explicit exception
conditions. Residues cannot arise in well-formed specifications,
and can be avoided in implementation by encapsulation of simple
algorithms for deallocation. However, some of the responsibility
must be handled by the language, the compiler, and associated
language support tools.

WDL-TR7809

KSOS VERIFICATION PLAN SECTICN IV Page 3e

CCMPARISCN OF THE CANDIDATE LANGUAGES

The languages considered in this study as candidates for the
KPL are summarized in Table 4.3. The letter grades given in the
table are obviously subjective. However, they have been subjected
to the scrutiny of various knowledgeable language people to check
their relative integrity.

The languages considered here include a variety of
Pascal-based languages, Euclid, Modula, UCLA Pascal, Gypsy, and
Pascal itself. Concurrent PASCAL was also considered, but seems
similer enough to PASCAL except for its handling of
multiprogramming to not recuire independent treatment. In
addition, it is designed to rely on the existence of an operating
system for some of its features, and thus is not appropriate for
implementing an operating system. For practical completeness, the
main UNIX*tm language, C, is also considered --although it presents
numerous problems as a would-be KPL, especially if program
verification is ever to be considered. In addition, a language
designed to be ideally suited to the SPI methodology is also
included, although it is as yet not supported. That language is
ILPL, discussed in the Ford/SRI proposal, and documented in Neumann
et al. (771. (The Xerox PARC language MESA might be a strong
candidate, were it not for the fact that it is nonexportable.)
Finally, in order to enhance assessment of future alternatives, the
IRONMAN recuirements are represented in the form of an as yet
undefined4 language that would satisfy those recuirements.

All of the candidate languages are fairly precisely defined.
Fowever, there are difficulties when it comes to finding a well
supported language that also has the desired features. Euclid is
seen to be Quite reasonable in this respect. A Euclid to C
transliterator now exists, and a compiler (translating to POP-]i
code) is expected to be available around I July 1978, in an effort
at the University of Toronto and I.P. Sharp. Modula exists in a
6400 version that is not yet widely available, along with a PDP-11
version, at the Eidgenossene Technische Hochschule in Zurich.
Recent discussions with Niklaus Wirth indicate that most of the
difficulties in using the current version of Modula for KSCS are
being surmounted by changes already contemplated by Wirth in
Zurich, and that a viable compiler supporting most of these chances
is planned for around I July 1978. (Another recent Modula
implementation also exists on a PDP-11 at York University in
England.) Various Pascal implementations exist. UCLA Pascal is
being used in the UCLA security kernel, and is currently undergoing
both language extensions and improvements in efficiency. Gypsy is
supported only in terms of the front-end checking of the Texas
verification system, although the extension of that support into a
more compiler-like environment is in progress. ILPL is at present
unsupported, although support is planned.

C. A. P. F'oare has suggested that no good language can be
developed in less than ten years. Modula, as one languaqe in a
series of Pascal-like languages developed by Niklaus Wirth, is
protably the most seasoned of the candidate languages. Euclid

WDL-:R 7809

- KSOS VERIFICATION PLAN SECTION IV Page 39

might appear weak in this category, but it too is conceived
incrementally to Pascal, and its design represents considerable
experience. Gypsy is also fairly 3trong in this respect. ILPL
would appear to be the least seasoned, but compensates by being the
simplest of the candidate languages --because of its relationship
with the surrounding Hierarchical Development Methodology. HDM
provides many features traditionally a part of the programming
language, such as the data structures at each level out of which
higher levels are implemented. As a result, it has the potential
of greatly simplified verification: many of the proofs arise from
properties of the methodology or provable properties of the
specifications, rather than from properties of the programs.

Modula, Pascal, and UCLA Pascal are deficient in their lack of
support for separate compilation. Most of the languages except
Gypsy and ILPL are deficient in their handling of exception
conditions. Support at least for error conditions is certainly
required; ILPL provides more, with a general exception-handling
mechanism well suited to the formal specifications of the SRI
methodology.

The control features as well as the data types and data
structures supported by each of the candidate languages are more or
less satisfactory. C is deficient in its almost total lack of
strong typing, and most of the languages (except Euclid, Modula,
and ILPL) are deficient in their handling of data abstraction and
encapsulation for program-created data types. Dynamic object
creation is deficient or lacking in C, Modula (at present), and
Gypsy (at present).

The handling of multiprogramming and the handling of machine
dependence both present fundamental differences of viewpoint. Cne
alternative is to leave the handling to language extensions, and to
have the language do essentially nothing (neither favorable nor
unfavorable). A second alternative is to provide some mechanism
within the language. This approach may be appropriate for some
applications, but inappropriate for others, as in the case of Gypsy
and to some extent Modula.

A major requirement of the selected programming language is
that it be compatible with the SRI hierarchical development
methodology. Here of course ILPL has an advantage, since it has
been developed in conjunction with the methodology. The only
language that really is bad in this respect is C, although each of
the others presents some problems. Euclid seems reasonably
appropriate.

A further consideration is verifiability. Here Euclid, Gypsy
and ILPL seem superior, largely because provability was a major
consideration in each language design. (The future role of program
verification is considered in Appendix IV.A.)

WDL-TR 7809

KSOS VERIFICATION PLAN SECTION IV Page 40

DECISION PROCEDURE FOR LANGUAGE SELECTION

Based on the above evaluation, the following procedure is
recommended for selection of the KSOS programming language, on or
about I July 1978.

IF the Euclid compiler development effort at Toronto con-
tinues on its present course and gives adequate support,
THEN use it -- with some accommodation for hardware
error signalling. Some subsetting of the language
may be desirable, for simplicity, efficiency, and
enhancement of any eventual verification.

ELSE IF Modula has been adequately extended and those
extensions supported, THEN use it.

{At present it seems that Euclid will be appropriate,
although Modula provides an attractive alternative.
At this point, it is extremely unlikely that any more
ELSE clauses are needed. However, there are other

* languages that might be appropriate, e.g.,}
E
ELSE IF ILPL is adeuately supported, THEN use it.ELSE IF Gypsy is adequately supported, THEN use it.

ELSE use UCLA Pascal.

-It is remotely feasible to use C, but only with the
addition of various programming constraints, and with
the explicit understanding that the kernel would
subsequently be recoded in a more suitable language,
before any program verification is attempted.
However, such a course is neither necessary nor
advantageous.

IMPLICATIONS CF HAVING MADE THE CHOICE OF LANGUAGE

The following sections present some of the considerations
arising once the language choice has been made. It is of course
important to assure that these considerations are anticipated in
the language choice itself.

LANGUAGE-INDEPENDENT IMPLEMENTATION CONSIDERATIONS

Various considerations arise in implementation that are
largely independent of the specific language choice. Some of these
are summarized here.

(1) The user-emulator and emulator-kernel boundaries represent
specific interfaces at particular levels in the hierarchical
specifications, but are not explicitly designated as such in
the specifications. The same is true of the security
perimeter, namely the interface wbich includes all
security-relevant code (namely the kernel and the trusted
processes, i.e., non-kernel security-related code). These
bounc4aries are made explicit by the atstract mAcine
irt-rrrPtpr for cech level, which nnws wh.ch#r ,.o.t 1 rv-1 :s

KSOS VERIFICATION PLAN SECTION IV Page 41

-part of user mode, supervisor mode, or kernel mode. Thus
these decisions become a part of the initialization process.

(2) Specifications and mapping functions are language-independent
in spirit, although the data structures of a particular
language and of the target machine (in this case, the PDP-li)
will influence the way in which mapping functions are written
at the lowest levels.

LANGUAGE-DEPENDENT IMPLEMENTATION CONSIDERATIONS

Numerous considerations arise that are dependent on the
language choice. Four are identified here, relating to the
transformation of SPECIAL constructs into the programming language,

. the handling of certain implementation concepts not addressed by
the specifications, the generation and optimization of programs,
and program verification.

(1) Transformation of SPECIAL constructs into the chosen
programming language, involving the following:

* Designators, i.e., protected names for abstract objects
(e.g., represented as nonmodifiable integers)

* Modules, including the facilitation of encapsulation and
module integrity (e.g., by establishment of suitable
constraints on import/export or their equivalent)

* Types and type checking, including assurance of type safety
* Structures of the various levels of data abstraction

and assurance of data structure integrity
* Facilitation of proper synchronization among potentially
parallel operations by establishment of synchronization
conventions (note that the specification of each function
is logically indivisible),

* Exception conditions: associating names with exceptions
(Note: SPECIAL now supports named exceptions directly.)

(2) Abstract machine interpreter issues not visible in the
specifications, but significant to the implementation.
The abstract machine interpreter deals with the way in which
the functions at each level are executed, and deals with
function invocation, exception handling, and sequencing:

* Function invocation options: software expansion vs.
hardware expansion/interpretation/execution. The former
includes a choice among in-line macro expansion, procedure
calls, process invocations via IPC (even intersystem
invocations via network protocols).

* Calling conventions: argument and return value passing,
normally permitted on call-by-value and return-by-value
basis only; deviations (e.g., pointer passing or conversion
to call-by-reference, for efficiency reasons) should be
explicitly sanctioned on an Individual-case basis.

* Exception handling: signalling exceptions, treating hardware

WDL-TR7809

771

KSOS VERIFICATION PLAN SECTION IV Page 42

errors as a special case or as an instance of the general
case. Note a desired symmetry -etween return values ane
exception returns.

(3) Program generation and optimization

* Transformation of EFFECTS and of EXCEPTION checking into
abstract programs

* The selective omission of code for exception detection and
exception handling, where avoidable --e.g., because of
compiler checks, loader checks, or verification-guaranteed
properties

* Handling of remaining exceptions
* Handling of explicit optimization instructions and other
optimizat ion

* Transformation of abstract programs into executable code

(4) Program verification

* Assurance of general consistency with specifications, or
assurance of partial consistency such as proper placement of

synchronization primitives, lack of storage residues, etc.
* Support for the chosen language in the front-end of the
verification environment

ILLUSTRATION OF A EUCLID PROGRAM

As an example of how these concepts apply, the module
specification of Figure 2.1 of this report is taken as the basis
for an illustrative implementation. Mapping functions relating
this module to lower-level modules (not specified here) are
sketched in Figure 4.1. (In general, the mapping functions provide
the basis for the assignment of explicit data structures
preparatory to implementation. However, the lower levels are not
essential to the illustration, and thus are omitted.) Finally, a
Euclid program for the fwrite function of that module is sketched
in Figure 4.2. (Again, since the lower-level specifications are
omitted, the proqram details relating to the specific
implementation are omitted.)

Various relationships between specifications and Euclid
programs may be observed from this illustration. These include the
similar roles of modules used for encapsulation of both procedure
and data abstractions in SPECIAL and in Euclid; the similar roles
of procedures in each case; the similarities between respective
type and data declarations, and strong type checking (although the -.
repeated writing out of type information is avoided by the more
implicit style of Euclid). Import lists for modules and procedures
in Euclid directly reflect several SPECIAL constructs, namely
external references from lower-levels modules, module parameters,
exception conditions and return values to be returned, and function
arquments. Export lists in Euclid modules directly reflect the
list of functions visible at the level in which the specified
module appears. These correspondences should make it quite
straightforward to program in a language such as Euclid, given

WDL-TR 7809

KSOS VERIFICATION PLAN SECTION IV Page 43

specifications in SPECIAL, and should aid in verifying consistency
of programs and specifications.

These correspondences would also make possible an elementary
kind of automatic programming, in which a program skeleton (similar
to Figure 4.2) is generated automatically from specifications
--presumably after those specifications have been proved consistent
with the formal requirements. In this way it would be possible to
avoid a large number of routine programming errors, and to stylize
the form of the resulting programs for increased readability.
Constructs of the specifications that could not be directly
transformed into constructs of the programming language could be
flagged, and perhaps indicated as comments in the program skeleton.

Although many SPECIAL constructs transform directly into
corresponding programming language constructs, some do not. For
example, an exception condition in a specification normally
corresponds to an explicit check in the program. However, in
certain cases (e.g., if the exception is implicit in an EXCEPTIONS
OF construct), the exception condition might be transformed into a

- . Euclid "assert" statement (whence it is to be shown that it cannot
occur). (On the other hand, a SPECIAL "assert" statement would
always be transformed into a Euclid "assert" statement, appearing
as a precondition.) A programming tool that would provide
skeletal programs wherever that would be appropriate is in fact
being contemplated for development under other contracts at SRI,
and has a good chance of being ready in time for use in Phase II of
KSOS. However, any such tool must be used with discretion by the
programmer, for a specification is not meant to dictate its
implementation; the specification is intended to provide clarity
of understanding, whereas the program must be written for efficient
implementation. Nevertheless, such a transformation into a
skeletal program with indications of what remains to be done seems
to be simple to achieve and useful in reducing programming error.

CONCLUSIONS

The final selection of the KPL can safely be deferred until
about I July 1978 (Phase II), at which time much more will be known
about the candidate languages. At present, based on expectations
of support anticipated at that time, the use of Euclid seems most
desirable, although possibly with some restrictions on the use of
the language. Progress on the existing Euclid compiler development
at Toronto and support by I.P.Sharp both seem to be indicative of
the timely delivery of a compiler capable of producing reasonably
efficient code for the DEC PDP-11/70.

Modula might alternatively be used -- assuming success of the
current modifications to the language and the compiler. However,
the Modula support picture is at present much less clear. Gypsy
and ILPL are both interesting languages, but could not be
considered as serious candidates unless they are adequately
supported at the time the decision must ultimately be made. UCLA
Pascal could be appropriate if Euclid and Modula fail. Pascal and
Concurrent Pascal have enough disadvantages to be not worth

WDL-TR7809

KSOS VERIFICATTON PLAN SECTICN 17 Page 44

considering further at this time. C would be suitable only with
extensive effort, not considered necessary or appropriate for F ECS.

It should be noted that the DoD/I effort has led to the
definition of four candidate languages, with varying degrees of
suitability for KSOS. Although none of these DoD languages is
likely to be supported in time for the Phase II implementation of
KSOS, the language(s) ultimately emerging from this effort could
still play a role in subsequent versions of KSOS (See Appendix
IV.A).

- APPENDIX IV.A

* THE POTENTIAL ROLES CF PROGRAM VERIFICATION AND NEW LANGUAGES

VERIFICATION AND NEW LANGUAGES

Verification is at this point is an important but not
overriding concern in the language evaluation. It appears that
Euclid is suitable for eventual program verification, particularly
with the imposition of a few language restrictions. It is felt
that with such constraints on the chosen language, the KSOS kernel
programs can be formally verified using either Euclid or Modula.

A potential future role for DoD/i is possible. If at some
later time an effort is to be mounted to verify the programs of the
KSOS kernel and trusted processes, it may then be appropriate to
reevaluate the available languages, considering at least CD0/1,
ILPL, and Gypsy as candidates as well as Euclid and Modula -- for
different reasons. The choice of language at that point should
then include suitability for verification as a major criterion.
Reimplementation of the kernel 9nd trusted NKSR programs would seem
cuite straightforward, considering their fairly small total size.

DoD/i

If DoD/i were later chosen, it would then be relatively easy
to recode the KSOS kernel. This would be enhanced since the
resulting DoD/I language would be a Pascal-based language (and is
likely to resemble both Modula and Euclid in various essential
respects). This would also be enhanced by the Ford/SRI design,
since formal specifications for the resulting kernel will exist for
which the basic multilevel security properties have been proved --
with respect to the design. These specifications would be
essentially the same for both the prototype unverified
imolementation and any subsecuent verified implementation.

ILPL

Althouqh ILPL is not supported sufficiently to warrant its use
at present, there are two potential roles that it might take in the
future, both outside of the scope of Phase I. The first involves
its use as en intermediate language in a subsecuert program
verification, serving to simplify the verification effort. The

WDL-TR 7809

KSOS VERIFICATION PLAN SECTION IV Page 45

second involves its use as an abstract programming language in
which to export abstract programs for the reimplementation of the
design on other hardware. At present, these roles remain
speculative.

The recoding of the security-related software of FSCS in TLPL
at some subsecuent time when program verification is to he
seriously attempted would have several major advantages -- assuming
TLPL is by then supported as planned. TLPL provides an abstract
programming language, in the sense that one level in the system
hierarchy can be programmed using just ILPL constructs and the data
abstractions and functions provided by the specifications of the
next lower level(s) in the hierarchy. Thus the data abstractions
used by ILPL for implementing a particular level of the design are

- those supported by the hardware and those that are defined by
lower-level specifications. Consequently, the ILPL programs may be
(automatically) translated into whatever target language is desired
--e.g., Euclid, DoD/I, or direct to machine code-- while the
program verification can be conducted by relating the specification
language SPECIAL to ILPL rather than by having to work directly
with the more complicated target language. In addition, the
translation to the target language may be verified in a largely
program-independent (but language-dependent) manner. As a result,
the verification effort would then be decomposed into model-to-spec
consistency proofs, spec-to-ILPL consistency proofs, and generic
treatment of the ILPL to target language step. This approach is
considered to be considerably simpler than the traditional program
verification approaches of relating verification directly to the
target language, and holds significant promise for the future of
system verification.

ILPL could also be useful as a reference language, in that an
ILPL abstract-proqram version of the KSOS kernel, together with the
formal specifications, could increase the ease of implementation on
other machines (e.g., the Honeywell Level 6/40) or on the same
machine with other programming languages. Exportation of such
abstract programs would further enhance the compatibility between
different implementations of the KSOS kernel, and increase the
understandability of the system.

INCREMENTAL VERIFICATION

Associated with the notion of verifying a system design and
its implementation are various related notions dealing with
reverification of subsequent modifications, and with verification
of different implementations of the same specifications on
different hardware. Whenever changes occur in the specifications,
it is necessary to check whether those changes affect the proofs of
reouirements. Similarly, changes in implementation or different
implementations require corresponding reverification or new
verification of program consistency. The SRI methodology tends to
minimize such subsecuent efforts.

WD)L-TR7809

KSOS VERIFICATION PLAN SECTION IV Page 46

REFERENCES

Sisbey et al. [75] R. Bisbey II, G. Popek, J. Carlstedt,
Protection Errors in Operating Systems: Inconsistency of a Single
Data Value Over Time, ISI/SR-75-4 (December 1975).

Bisbey et al. [76] R. Bisbey II, J. Carlstedt, D. Chase, Data
Dependency Analysis, ISI/RR-76-45 (February 1976).

Carlstedt (76] J. Carlstedt, Protection Errors in Operating
Systems: Validation of Critical Conditions, ISI/SR-76-5 (May
1976).

Carlstedt et al. (751 J. Carlstedt, R. Bisbey II, G. Popek,
Pattern-Directed Protection Evaluation, ISI/SR-75-31 (June 1975).

Hollingworth and Bisbey [76] D. Hollingworth and R. Bisbey II,
Protection Errors in Operating Systems: Allocation/Deallocation
Pesiduals (June 1976).

Neumann et al. (77] Peter G. Neumann, R. S. Boyer, R. J. Feiertag,
K. N. Levitt, and L. Robinson, A Provably Secure Operating System:
The System, Its Applications, and Proofs, SRI Final Report, Project
4332 (11 February 1977).

Neumann f78] Peter G. Neumann, Computer System Security Evaluation,
Proc. National Computing Conference, Anaheim CA (5-8 June 1978).

WDL-TR 7809

KSOS VERIFICATION PLAN SECTION IV Page 47

Table 4.1
Summary of KSOS Programming Language Requirements

Language well defined
Adequately supported by compiler and other tools
Efficient in compilation and (particularly) in execution

Control: Data types: Data structures:
IF ... THEN INTEGER ARRAY
CASE BOOLEAN STRUCTURE
WHILE ... DO CPAR STRING
PROCEDURE BIT STRING
FUNCTIONS REFERENCE
FXCEPTIONS ENCAPSULATION

for program-defined types

Type safety
Support for separately compilable programs
Dynamic creation and deletion of objects
Support for multiprogramming
Support for machine dependence

Compatibility with the SRI hierarchical methodology
Suitability for eventual program verification

Help in avoiding characteristic security flaws
(cf. Bisbey; see Neumann (781) such as:
improper domain choice
exposed representations
data inconsistency
naming problems
residues
nonvalidation
improper indivisibility
improper serialization
wrong operation choice

WDL-TR7809

KSOS VERIFICATION PLAN SECTION IV Page 48

Table 4.2

KSOS Programming Language Desiderata Tabulated
According to July 1977 Revised IRONMAN Requirements

1. General Design Criteria: No ess#.ntial differences (NED).
(Generality, Reliability, Maintainability, Efficiency,
Simplicity, Implementability, Machine Independence,
Formal Definition)

2. General syntax: NED.

3. Types: NED, including definition of new data types (3C)
and operations between types (3-5D). However,
3-1A, floating point is not necessary.

4. Expressions: NED.

5. Constants, Variables and Declarations: NED.

6. Control Structures: NED.

7. Functions and Procedures: NED.

8. Input-Output Facilities: NED.

9. Parallel Processing: NED.

10.Exception Handling: NED, although suppressing of
exceptions (10G) is not recommended unless an exception
has been proved not to occur.

I1.Specifications of Cbject Representation: NED.

12.Library, Separate Compilation, and Generic Definitions: NED.

13.Support for the Language: NED.

WDL-TR7809

KSOS VERIFICATION PLAN SECTION IV Page 49
Table 4.3

Summary of Candidate Languages in Terms of
Suitability for Implementing KSCS

Languages C EUCLID MODULA UICLA PASCAL GYPSY ILPL DOD/
Features PASCAL (4)

Support A (M) C/y 2 A (2) (3) (4)
Efficiency A (1) A B-/y B (2) (3) (4)
Readability 2 A/r A A A A A A
Fase of coding B A/r A A A A A A to B

Control A A A B B A A A
Sep Compilation A A C/y C/x C/x A A P
Arg passing C/a A A A A A A A
Exceptions C C B C C A A A

Data types B- A A/py B F A/p A/p A

Data structures A A A A A A A A
Strong typing F A A/g B B A A A
Data abstract'n F A B/y B F A A/m A
Encaosulation F A/q A B D B/q A P
Dyn creation D A D/y A A D/y A A

Multiprogram'ng UNIX Extend B Extend Extend B Extend A to C
Device-depen'ce A A B Extend Extend Fy Extend ?(Ext)

HDM suitability F A- B- C C B+ A A-
Verifiability F/c A/r B B B A A A to B

): Work planned. Evaluation incomplete or premature.
1: EUCLID to C transliterator works now. EUCLID to 11 code planned July 78.

A generic caveat applies to those entries in the EUCLID column for which
EUCLID is rated better than PASCAL or MODULA: difficulties in implementa-
tion could lead to a desire for language changes; however, based on
experience to date, this does not seem likely.

2: Presently only syntactic and semantic analysis exists as part of a verifi-
cation environment. Implementation and language redesign in progress.

3. ILPL is at present only a paper language -- although simple and complete.
4. The four candidate DoD/i languages have been defined, each claiming

compliance with the IRONMAN reouirements. The entries given for the Doc/i
column indicate the variety provided by these languages. A compiler for
at least one language is expected to result from subsequent work.

a: In the UNIX code, arguments are immediately copied following each call.
c: Supersubset used with preprocessor could lead to verifiability,

although probably with significant loss of efficiency.
g: No generic types.
m: In combination with the SRI methodology, which provides data abstraction

in the specifications for each level of a hierarchical design.
p: No pointers. In ILPL, designators seem to be an acceptable substitute.
a: Encapsulation can be achieved by appropriate language constraints

(e.g., on import/export), but is not intrinsic in the language.
r: With a few restrictions on the use of the full language.
x: Not currently supported.
y: Improvements planned in a version of the language under development.
Extend: Language design intends this to be implemented via extensions.

WDL-TR7809

I
KSOS VERIFICATION PLAN SECTION IV Page 50 -

Figure 4.1
Skeletal Mapping Functions for the Files Module of Fig. 2.1

MAP Files TO Metafiles, Machine

TYPES $(See Fig. 2.1.)

DECLARATIONS $(See Fig. 2.1.)

PARAMETERS $(See Fig. 2.1.)

DEFINITIONS $(See Fig. 2.1.)

EXTERNA LREFS

FROM files:
VFUN h_file(fileid fid; access-level level) -> VECTOROF CHAR c;

FROM metafiles:
VFUN i uid(file id fid; access_ level level) -> INTEGER uid;
VFUN i nlink(file id fid; access level level) -> INTEGER links;
file id: DESIGNATOR;

FROM machine:
char: I VECTOROF boolean v I LENGTH (v) - 8 1; $(PDP-11 byte)

MAPPINGS
h file (file id fid, level): ... $(VECTOROF char in terms of machine

words not necessary for purposes of the example)
END MAP

WDL-TR 7809

KSOS VERIFICATION PLAN SECTION IV Page 51

Figure 4.2
- Skeleton of Euclid Program for the "Files"

Module Specified in Fig. 2.1

(declarations in outer scope)
var clearance : integer 0 maxClearance;
var categorySet array 0 .. numberOfCategories - 1 of Boolean;
type accessLevel = record

secur ityClearance clearance
securityCategory categorySet
integr ityClearance clearance
integrityCategory categorySet

- var fid : integer;
var offset : integer;
type data = array ... of char;
var uid: integer;
var (level] : accessLevel; [implicit argument, not provided

by calling program}

var Files:
module

imports (var Metafiles, var Machine, flower level modules)
var errorNo, {exception code return arc
maxClearance, numberOfCateqories, [module parameters}
eNoError,eNoFile,eBadLevelForWrite, (exception conditionsL
fid, offset, data, uid, [level]; {function arguments)

exports (FRead, FWrite, FTruncate); (visible functions)

(This module includes the visible procedures FRread, FWrite,
and FTruncate, and the hidden V-function HFile, as specified
in Fig. 2.1 of this report. For simplicity, only a portion of
the code supporting the visible function FWrite is shown here.
The representation for HFile would be found in the mapping
functions for the Files module (Figure 4.1), were they complete.
The argument "(level]" is imported to the module as an implicit

argument. That is, it is not explicitly presented by the
calling program, but is provided upon each call (by an abstract
machine interpreter function).
Note: As in Fig. 2.1., a would-be error value eReadNotAllowed

is suppressed ' favor of the error value eNoFile, to prevent

a leakage channel.}

const eNoError : 0;
const eNoFile : 1;
const eBadLevelForWrite := 2; WDL-TR 7809

KSOS VERIFICATICN PLADN SECTION IV Paqe 52

(Figure 4.2, conrinued)

procedure FWrite =

imports (var Metafiles, Machine,
fid, offset, data, uid, 2evel,
vat errorfo, eNoFile, e~adLeveForWrite);

pre (; (none; note EXCEPTIOD'S in the specifications are
explicitly programmed into t-he begin .. end.)

post (... fif eNoError then EFFECTS of specifications,
if eNoFile or e8adLevelForWrite thern no EFFECTS,);

begin
beqin

exit when ... feNoFile};
exit when ... (e~adLevelForWritel;
for ... feach chari loop

(perform write for each character,
end loop;

end;

if ... feNoFilel then
errorNo := eNoFile;

if ... fe~adLevelForWrite) then
errorNo :- eBadLevelForWrite;

else errorNo eNoError;

end FWrite;

end modlule; (Files)

WDL-TR 7809

SECTION V
TOOLS SUPPORTING THE KSOS DEVELOPMENT

In order to facilitate the use of the hierarchical development
methodoloqy, various on-line tools have been developed or are
planned. This section describes these tools, whose use is being
pursued or anticipated to support the design and implementation
of KSOS, as well as the way in which the verification of the

4 design and the implementation will be pursued.

TOCLS TO SUPPORT THE DESIGN AND THE CORRESPONDENCE PROOFS

SI International has developed an on-line environment to
- support the first four stages of the methodology, i.e., the

interface definition, the hierarchical decomposition, the
specifications, and the mapping functions. This environment also
forms the basis for performing the proofs of correspondence
between the formally stated multilevel security requirements and
the specifications. The environment is open-ended, and -- based
on existing tools -- is expected to be extended to support
verification of the desired design properties and to support
implementations and proofs of implementations.

-The environment currently runs on TOPS-20 at SRI, existina
in three parts, as follows.

(P1) The HIERARCHY MANAGER, which permits the establishment
of a hierarchy of collections of modules, and which is
responsible for maintaining the desion structure.

(P2) The SPECIFICATION ANALYZER, which determines if each
module specification is syntactically correct. This part
includes type checking.

(P3) The MAPPING FUNCTION ANALYZER, which determines if the
mapping function expressions are syntactically correct and
syntactically consistent with the specifications of the
modules involved.

These tools have proved to be very useful in the detection and
correction of design errors, first in the formal specifications
for UNIX*tm, and then in the formal specifications for the KSOF
kernel. Many of these design mistakes are typically of the kind
that would otherwise persist into the implementation.

Given formal specifications for the kernel, expected to
satisfy the multilevel security properties (with a few
well-documented exceptions needed to support the VKSR software),
proofs that those specifications actually satisfy multilevel
security are relatively straightforward, although somewha
tedious. (See Section II of this report.) These proofs could
well be carried out by hand. However, much of the mechanism fcr
doing these proofs automatically already exists. Thus, a fourth
tool is both feasible and highly desirable, in order to perform
the correspondence proofs automatically.

WDL-TR 7809

KSOS VERIFICATIOn PLAN SECTION V Page 54

(P4) The MCODEL CONSISTENCY CHECKER, which performs the
syntactic checks for correspondence proofs that are not a
part of the specification lanauage syntax checking, which
performs simple semantic checks, and which also generates
logical formulae whose validity is ecuivalent to the
satisfaction of the more complicated semantic conditions for
consistency with the model. The basis for this checker is
summarized in Section II of this report. It is expected
that the deductive system of the Eoyer-,,oore verifier
developed at SRI International will be directly usable.

FaseO on experience to date, the generation of the logical
formulae is straightforward. roing proofs automatically will be
helpful in eliminating human error from the proof process.
Essentially all of the correspondence proof effort can be
mechanized by these tools. That is, all but a few special cases
of demonstrating that the specifications satisfy the recuired
multilevel security properties are syntactic in nature, and can
be treated automatically. The remaining cases, once identifiee,
can be characterized, and most of those can then be trcated
automatically from then on by generalizing the special cases.

TOOLS TC SUPPORT IMPLEMENTATIOF AFD PROGRAM VEPIFICATICN

In addition to the tools outlined above to support the
design and the correspondence proofs, various related tools are
olanned or actively being developed at SRI to support
implementation and program verification in general. These
additional tools are being developed under other contracts, so
that there is no expected cost to the FSOS effcrt, other than tir
accuisition of these tools and the accommodation of the FSOS
Proarammint Language.

(P5) The PFCGPAM1 H ADLER, which determines if each program
is syntactically correct. This tool may also be extended to
perform simple semantic checks on the programs, such as
those for the placement of synchronization primitives to
assure nonharmful modification of shared state informaticn.

(P6) The DEVELOPMENT CATA-DASE MANAGER, which maintains a
data base of the specifications, programs, and proofs in
(P1), (P2), (P3), (P4), and (P5), keeping track of which
modules are specified, mapped, implemented, and verified.

(P7) Additional proof tocls to support proofs Cf consistency
between scecifications and programs. If program
verification is ultimately to be undertaken, these tools
woule include

(a) A parser for the KSOS proqramming language (KPL),
possibly the parser of the KPL compiler itself.

(b) A verification condition cenerator for the .PL.
This VCGF would generate verification coneitions whose
correctness is necessary to guarantee the correctness

WDL-TR 7809

KSCS VERIFICATION PLAN SECTION V Page 55

of the system implementation.

(c) A translation mechanism from SPECIAL to existing
SRI verification tools.

(d) The adaptation of a program prover suitable for
proving the verification conditions generated in (b)
above. It is currently expected that the existing SRI
theorem prover of Boyer and Moore would be adapted with
relatively little effort, and used together with an
existing SRI formula simplifier due to Shostak (the
latter providing a decision procedure based on logic
and arithmetic expressions). The RADC proving
environment is also expected to play a role, probably
through the merging of its user interface with the
Boyer-Moore verifier. Both the RADC work and the
Boyer-Moore work (supported by NSF) are strongly funded
for the relevant future. On the basis of existing
work, a viable proving environment is expected to exist
at the time it would be needed for KSOS. In addition,
the Good, London, and Luckham verifiers could also
provide comoetitive tools that might also be
incorporated if they were deemed appropriate. However,
these other verifiers at present present various
difficulties concerning their adaptability to the SRI
methodology and to hierarchically structured programs,
and the applicability to the chosen KPL.

A usable collection of these tools is expected to be
available sufficiently early in Phase IT to be useful for
carrying out illustrative proofs of program correctness.

AUTOMATING THE DESIGN PROOFS

The technique for proving the consistency of the KSCF design
with the security model has already been described in Section II.
The approach to automating the proof is ind._ated in (P4) above.
For the purposes of automation the proof or security of the
design can be divided into three tasks:

(Ti) determining that the design specifications are well
formed (i.e., that the syntax is correct and that the strong
typing is enforced),

(T2) generating the theorems from the specifications that
must be proved to assure security, and

(T3) proving these theorems.

As described above, SRI has developed a tool (P2) that
accomplishes task (TI). The theorem-provinq tools mentioned in
(P7) above can be used for accomplishing task (T3). The theorem
prover developed by Poyer and Moore seems apropriate, because its
operation is]arqely automatic and reouires minimal user
interaction. (The fact that the theorem prover deals with [,TSP

WDL-TR 7809

YSCS VERIFICATICN PLAN SECTICN V Pace 56

is really incidental, in that LISP is used primarily as an
internal form for recursive programs.) Thus, the only tool that
need be written is the theorem generator for accomplishing task
(T2). This theorem generator can take the internal parsed form
of a specification generated by the specification checker and
oroduce theorems suitable as input to the Boyer-Moore theorem
orover. FACC estimates that programming this theorem generator
woule recuire one and one-half man-months of effort for an
experienced LISP programmer having some familiarity with the
Eoyer-Moore theorem prover and the specification checker.

AUTCMATINC TPE IMPLEMENTATICN PROFS

Informal checks that the high-level language implementation
nrcrams and the formal specifications are consistent and
extensive testing of the implementation programs will yield a
highly bug free implementation for FSOS. However, nothing short
of testing every possible case, a task that is clearly
imr-ossible, can guarantee completely bug-free programs. The only
way to guarantee correct programs is by formal verification.
Unfortunately, a complete formal verification of the FSCS
proorams (that is, the kernel and trusted NKSP software, plus
guarantees of isolation of the rest of the system) within -he
time frame of the J(SCS project would be very costly and must be
considered beyond the state of the art -- particularly because of
its depcndence on including the hardware in the proof path.
Further research is necessary in the verification certain types
of programming constructs, e.g., parallelism. Also, further
research is necessary in the area of automated theorem proving
which, when better developed, will bring the cost of formal
verification fown to more reasonable levels. The technology
necessary for a complete formal verification of KSOS programs is
probably only a few years away, but is not available for this
Phase I.

Even thouqh complete formal verification is not practical,
significant benefits can be derived from a formal verification of
some of the KS0S programs. Formal verification is likely to
4iscover bugs oveclooked by informal checks end by extensi "
testina. Experience has shown that formal verification
technicues find bugs in even small orograms that were overlookcd
by experienced programmers. in fact, if the formal verification
is begun early enough, it could pay for itself by disclosing tugs
that would have to be corrected in a more costly fashion at some
later stage. Also, formal verification of some of the KSCS
system programs will eemonstrate the feasibility of and the
utility of performing a complete formal verification of all the
programs at some later time.

PLA.N F(P FCRMIAL PROGFCPA VEP"FICATION

In order to obtain the maximum henefits from the formal
verification of a meaningful subset of the rSCS system, thc
programs on w)ich formal verification is to be attempted must be
carefully chosen. The programs to be verified must mcet two

WDL-TR7809

ISOS VERIFICATION PLAN SECTION V Page 57

criteria:

1. Formal verification of the program must be within the state

of the art and not be inordinately costly.

2. The programs must be critical to the security of the system.

In order to determine which programs best meet this criteria, we
will construct two lists of all the programs: the first will be
in order of decreasing ease of formal verification and the second
will be in order of decreasing importance to system security.
For example, on the first list the program that mcves files to
and from the disk would appear after the program that returns
amount of time used by a process because the former would contain
more parallel constructs than the latter and would be more
difficult to verify. Cn the second list the process scheduling
program would appear after the process dispatching program
because a bug in the dispatching program could result in a much
greater security breach than a bug in the scheduler. The
programs to be verified will be those closest to the top of both
lists. We will chose as many programs as we feel can be formally
verified within the allotted resources.

FURTHEP IMPLEMENTATION PROOF TOOL CONSIDERATIONS

Automated formal verification systems consists of two rnajor
parts: the verification condition generator 0 nd the theorem
prover. These two parts are analogous to the theorem cenerator
Pnd the theorem prover of the design proof tools. The
verification condition generator (VCG) takes as in input the
program to be proved and the formal specification of that
program. The VCG generates the theorems whose correctness
implies the correctness of the program. In order to do this, the
VC0 must have knowledge of the formal syntax and semantics of the
lanquage in which the program is written and knowledge of the
syntax and semantics of the language in which the specification
is written. The theorem prover, of course, attempts to prove the
theorems generated by the VCG.

As noted above, several formal verification systems exist
outside of SRI including those developed by Good et al. at the
University of Texas, London et al. at USC Information Sciences
Institute, and Luckham et al. at Stanford. At SRI there are a
formal verification system developed by Flspas et al. ane a
theorem prover developed by Poyer and Moore. There is as yet no
strong evidence to indicate that any one of these verification
systems is far superior to any of the others. It is possible
that any one could be adapted for KSOS. The adaptation rcouires
incorporpting knowledge of the KSOS Programming Language and
SPECIAL into the VCG. Integrating one of these verification
systems with the Poyer-Moore theorem prover should create a more
powerful system. Since SRI has all the in-house expertise
necessary to integrate and adapt its own systems, and since much
of this work may very well be done anyway under other projects,
the best approach seems to be to adapt the SPT tools to aid in

WDL-TR7809

KSOF VEPIFICATICN PLAN SECTICN V Page 58

the formal program verification. Since most of the desired tools
-re expected to be available by the time the verification is to
benin, and the only siqnificent tool development task will be to
adapt the VCC to contain knowledge of the VSCS Programminq
1,nguaqe (a straightforward task), most of the resources for
verification will go into the actual verificaton and only a
moriest amount into the tool development. The tools are
essential, however, to making the formal verification tractable
and creAitable.

_1 L-TR7809

SECTION VI
TESTING

FACC views testing as the natural complement to the formal
verification efforts. Testing can also expose classes of errors
that are not addressed by formal verification, such as errors in
the specifications. Testing is essential to the eventual success
of VSOS. Since formal verification and testing are so closely
related, it is appropriate to include FACC's plans for KSCS
testinq here.

FACC intends to provide three phases of testing for YSCS,

* module tests,
* partial integration tests (referred to as thread tests),
and
* system tests.

Module testing is intended to assure that individual modules meet
their specifications, both the formal specifications in SPECIAL
and the programmiri specifications (Types B5 and C5). The most
important product of the Phase I effort is a detailed and
comprehensive set of specifications for KSOS. The Hierarchical
Design Methodology (HDM) requires that each level in the design
be accurately and completely specified in a precise,
non-procedural languaqe (for KSOS, SPECIAL). These formal
specifications are complemented by the B5 Development
Specifications and the C5 Product Specifications. All these
specifications taken together represent a very thorough
description of exactly what the module is supposed to do. Module
testino, then, demonstrates that the as-built code does indeed
realize its specifications.

Partial integration testing (which FACC calls "thread
testing") is an attempt to provide early visibility to major
system functions. In tnread testing an attempt is made to test
major system functions well before the entire system is
integrated, or in many cases even implemented. Thread testing is
a variant of top-down integration using stubs. Pather than
stubbing out everything below some level, thread testing uses a
complete software path from the highest level to the lowest.
Those sections of modules that are not needed in a particular
thread test may be stubbed. Thread testing exercises the
higher-level modules more completely than can be done with Pure
top-down integration because the *stubs" are portions of the
actual deliverable code. Thread testing also exposes certain
types of interference between modules earlier than pure top-down
integration. Within FACC thread testing has been employed with
qreat success on a large (220,000 lines) software project.

System testing is primarily the pre-acceptance and
acceptance testing for the KSOS product. The main components of
system testinq are:

* internal pre-acceptance tests,

WDL-TR 7809

KSOS VERIFICATION PLAN SECTION VI Page 60

* formal acceptance tests, including Category I and II
tests,
* Functional Configuration Audit, and
* Physical Configuration Audit.

The nature of these tests is largely dictated by the contract and
long-standing, Government-approved FACC quality assurance
procedures and standards. FACC intends to use the system testing
also as a demonstration of certain security features, such as
resource quotas, that are lacking in UNIX*tm.

In the remainder of this section each of these test phases
will be discussed in more detail, particularly with respect to
how FACC intends to proceed with each phase.

- 4F

MODULE TESTING

FACC intends to thoroughly exercise each module before
committing it to integration. While complete path testing is
unrealistic (for many of the same combinatoric reason as theinfeasibility of full code proofs), FACC does intend to exercise

every statement at least once. To do this, FACC intends to
instrument the programs, either manually or automatically to
detect the execution of each of the basic blocks of the program.
Fy reducing this data for all test case executions it will be
possible to assure that each statement has be executed. Both
choices for the programming language (Euclid and Modula)
facilitate this by being completely block structured. The basic
blocks of a program are thus easily found. Also facilitating the
module testing are the steps taken to improve the verifiability
of the code. Making a module easier to prove also makes it
easier to test.

Since production compilers for the prime candidate languages
are not yet available, it is not clear how much support will be
available for testing. In particular, an efficient profiler such
as that in the C compiler would be of great benefit for module
testing. If such support is not available, FACC intends to
develop the minimally required support tools under the contract.
On going internally funded (IRAD and capital) efforts will also
supplement this tool development.

MAministrative mechanisms will be used to assure that the
testing has been accomplished. Copies (on-line) of the testing
input and output will be reviewed before accepting the module for
integration. This review is part of the larger first level
internal quality assurance inspection. The other parts are as
follows.

* A detailed review of the source code for style and
aesthetics (e.g. naming conventions, comments, readability,
etc.).

* A check of the module against its formal and programming
specifications. This check will verify that every exception

WDL-TR7809

KSOS VERIFICATION PLAN SECTION VI Page 61

cond. -ion is present as an explicit test, and that the
module implements its specifications. In these reviews,
particular emphasis will be placed on boundary conditions
for parameters and shared variables. Typically, it is the
parameter which is just out of range that causes the more
subtle errors.

These measures are mandatory for all deliverable software. They

are separate and distinct from any formal proof efforts.

PARTIAL INTFGRATION (THREAD) TESTING

Early in Phase II FACC will review the KSOS design and
define the threads and their associated tests. (Based on
experience with much larger projects, this is a very modest
task.) The thread definitions will also provide input to the more
detailed scheduling and manpower allocation for Phase II.

Fach thread consists of a sequence of inputs end anticipated
outputs. One can expect that some of the early threads may
recuire "switch flippino" to verify their performance. Other
threads may recuire modest amounts of test fixtures such as dummy
files etc. Normally, thread descriptions are developed with
close cooperation between the implementation and test personnel.
On a small project like KSOS, there will probably not be a
separately identified test team until late in the integration
effort. Rather, selected implementation personnel will also
serve as the internal test team. By using formally identified
threads, the potential "role conflict" here is minimized. Also
FACC intends to try to keep the test and implementation personnel
for a given function disjoint. Naturally, as more of the system
is integrated this separation may lessen.

Perhaps the most difficult part of thread testing is error
conditions and failures. Many of these conditions are initially
triggered by hardware detected error conditions, such as 6evice
errors or "impossible" software conditions. To adecuately test
KSOS, these conditions must be simulated and the error handling

-mechanisms exercised. At present, FACC intends to exercise
device error handling by slightly altering the real device
drivers so that their device registers are directed elsewhere.
ry adding a test fixture to the security kernel that fills in
these pseudo-device registers with an arbitrary, program
controlled bit pattern, all the error handling aspects of device
control can be exercises. It should be noted that this mechanism
assumes that reasonable test cases can be generated that
accurately reflect the way in which the hardware (mis-)behaves.
This technioue will allow all the system's devices to be
bootstrapped up.

Internal software inconsistencies are more difficult because
there are so many more possibilities. The HDM does provide some
help by identifying both exceptions and assumptions. In partial
integration testing many of the assumptions (FPFCIAL ASSERT
clauses) will actually be tested for. Standard error reporting

WDL-TR7809

KSOS VERIFICATION PLAN SECTION VI Page 62

mechanisms will be used when an assumption is violated. If the
performance penalty of this additional checking is not too qreat,
it might be well advised to leave it in the deliverable code.

KSCS will include certain types of checking not now present
in UMITX*tm, particularly in the area of resource cuotas. Partial
intearation testing will examine system behavior as these quotas
are approached.

FYSTEM TESTS

System tests are intended to exercise the system as a whole
an(to demonstrate its behavior in as realistic a setting as
Possible. Virtually no test/jia software is included in the

*/ system although specially constructed files may be used. The
system tests include internal pre-acceptance tests, formal
1acceptance tests, and the audits of MIL-STD-1521A on the as-built
software.

The pre-acceptance tests blend with the latter stages of
partial integration testing. For example, a thread test for
login/logout exercises a large amount of the KSOS system. Also
included in the pre-acceptance testing is a limited amount of
benchmark timings. By running near~y identical tests on a
UYNX*tm system , a basis for comparison can be established. The
Pre-acceptance testing will be performed by project personnel.
Written objectives, procedures and results will be collected.

The formal acceptance testing form and content is largely
dictated by the contract and existing, Government-approved
cuality assurance procedures. Project personnel will provide
technical incut to the support organizations who will actually
perform and witness the tests FACC will make maximum use of
automated tools to run and analyze the tests. These tools
include shell files running on 1(SOS and if Possible another
machine simulating the terminal load on FSCS. Supervision and
witnessing of the tests will be performed by the FACC quality
assurance organization. Due to the unique requirements of K1SCS
versus other software products, close cooperation between cuzlirv
assurance and project personnel is anticipated.

The final phase of acceptance testing are the audits of the
as-built software. The quidelines of t.IL-STD-1521. are
sufficiently flexible to accommodate the requirements of KSOS.
In particulAr, the Functional Configuration Audit can be used for
a formal review of the design versus the mathematicel model. The "
Physical Configuration Audit will be the vehicle for a review of
the os-built code versus its specifications, both formal, ene ttE
C5 Product Specifications. The audits will also be the
ancropriate place for formal review of the mathematical proofs of
correctness discussed elsewhere in this document.

WDL-TR7809

KSOS VERIFICATION PLAN SECTICN VI Page 63

SUMMARY

FACC feels that formal verification and testing are
different facets of the same goal, providing the Covernment with
a product of very high quality. To meet its recuirements, FSCS
may become perhaps the most thoroughly analyzed major software
product ever produced. The testing program described in this
section and the formal verification efforts described in other
sections will in FACC's opinion satisfy the design recuirements
for KSOS.

WDL-TR7809

0 1

